
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2024, VOL. 70, NO. 4, PP. 1071-1079

Manuscript received October 15, 2024; revised October 2024. doi: 10.24425/ijet.2024.152362

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,

https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

Abstract—This article presents an approach to building a bit-

exact simulation environment, capable of handling complex

wireless communication stack such as 6TiSCH with enough

performance, to be useful in large scale network topologies. The

architecture of the simulator and the stack is presented along with

the discussion of key features and design choices. The results of the

simulation are compared to the results of extensive testbed

experiments, which conclude that the designed tool can be used for

practical design and verification of large distributed IoT

applications.

Keywords—6TiSCH; network simulation; digital twin; IoT

I. INTRODUCTION

N recent years, we are facing a new wave of innovation

leading to the development of a branch of technology called

IIoT (Industrial Internet of Things) [1]. It shapes the ways of

connecting and exchanging data in extensive systems and

provides tools for advanced analyses. Optimization of complex

production processes requires collecting and transmitting large

amounts of information. IIoT provides new solutions in the form

of intelligent, wireless sensor networks and is the binder of the

so-called Industry 4.0. New technologies in the field of mass

wireless connectivity offer new opportunities as they become

the missing link between massive amounts of data sources and

cloud computing centers.

Industrial applications require high reliability at a reasonable

cost, hence the great interest in low power wireless systems

[2][3]. In wireless networks, reliability, understood as

uninterrupted availability of devices and meeting the QoS

(Quality of Service) requirements, can be effectively delivered

through the use of the Time Slotted Channel Hopping (TSCH)

technique. This technique allows to achieve very high

percentage of successful transmissions of even 99.9995% [4].

Modern applications require also high interoperability. One of

the important efforts towards achieving compatibility between

systems at the transport protocol level was undertaken by the

IETF and resulted in the publication of the 6LoWPAN standard

[5] [6]. The step that integrated both of these approaches was

the adaptation of the 6LoWPAN stack to the TSCH extension

as defined in the IEEE 802.15.4e standard, done by the IETF

6TiSCH working group which resulted in the publication of [7].

The article presents the results of R&D work carried out as part of the project

entitled ”Development of an innovative wireless communication platform for
the Internet of Things applications” (RPMP.01.02.01-12-0261/1), co-financed

by the European Union under sub-measure 1.2.1 ”Research and development

projects of enterprises”, Regional Operational Programme for the Małopolska
Region 2014-2020.

While being reliable, efficient and highly scalable [8],

6TiSCH networks are relatively complex, especially when

deployed in potentially large topologies with hundreds of nodes.

One of the key tools that allows to efficiently develop

applications using 6TiSCH protocol stack in a reliable manner

is an efficient and credible network simulator.

In this paper we present the approach that led to the

development of such a network simulator, which can effectively

emulate complex wireless distributed systems using 6TiSCH

communication protocol, acting as a digital twin. The simulator

uses custom 6TiSCH implementation called embeNET [9]

running within the OMNeT++ discrete event simulation

framework [10]. We also present the results of the

comprehensive study of a 6TiSCH-based network operating in

2.4 GHz frequency band, using the Bluetooth LE 1Mbit PHY,

that was used to verify and benchmark the simulator. An

important aspect of the presented simulator is its bit-level

accuracy, which in our case means that the simulated devices

exchange exactly the same packet data (down to a bit level) and

run the same network and application-level source code, built

for the simulator.

II. THE 6TISCH COMMUNICATION STACK

6TiSCH combines the 6LoWPAN with IEEE802.15.4e-

TSCH MAC and Physical (PHY) layers. While challenges

regarding efficient link layer resource allocation persisted, the

introduction of the 6P/6top framework provided a solution [11].

This framework enabled the application of various TSCH

timeslot allocation techniques. Additionally, 6TiSCH addressed

node association and connection maintenance issues. The

Minimal Scheduling Function (MSF) was also introduced as a

straightforward decentralized timeslot allocator, enabling basic

initial communication [12]. The 6TiSCH stack conducted by the

IETF organization is currently in concluded state.

Nodes within 6TiSCH networks follow a scheduled pattern

that is mutually established between nodes for communication.

All nodes are synchronized below millisecond precision.

Within the schedule the nodes allocate slots for communication.

Each slot is determined by Slot Offset and Channel Offset.

Communication cells are organized within recurring slot frames

(Fig. 1). A cell can be bidirectional, which means that there can

be more than one node sending packets within a single cell.

Authors are with AGH University of Krakow, Faculty of Computer Science,

Electronics and Telecommunications, Institute of Electronics, Poland (e-mails:
kubaszek@agh.edu.pl, https://orcid.org/0000-0002-8670-0088;

macheta@agh.edu.pl, https://orcid.org/0000-0002-0290-0606;

lkrzak@agh.edu.pl, https://orcid.org/0000-0001-8139-829X;
worek@agh.edu.pl, https://orcid.org/0000-0003-3741-5501).

Bit-exact simulation of 6TiSCH networks
Mateusz Kubaszek, Jan Macheta, Łukasz Krzak, and Cezary Worek

I

https://creativecommons.org/licenses/by/4.0/
mailto:kubaszek@agh.edu.pl
mailto:macheta@agh.edu.pl
mailto:lkrzak@agh.edu.pl

1072 M. KUBASZEK, ET AL.

The TSCH scheme must provide uniform channel

randomization. The channel selection follows the formula

below (1). Provided that the number of channels and slots count

in slotframe are mutually prime numbers, the requirement for

uniform randomization is satisfied.

Fig. 1. TSCH timeslot organization diagram

 chan = F(channelOffset + 𝐴𝑆𝑁)mod(nFreq)) (1)

Where F is a function that maps channelOffset to set of

channels, ASN (Absolute Slot Number) is a monotonic slot

counter and nFreq is the number of available channels.

There are a couple of cell types that can be distinguished:

• Advertisement Cells. Predefined bidirectional cells within a

slotframe that serve the purpose of network joining and parent

selection.

• Autonomous Cells. These unidirectional cells are designated

for packet transmission when managed cells are not assigned,

such as during the association phase.

• Managed Cells. Unidirectional cells employed for managing

data traffic. Negotiated on demand. In our implementation

one obligatory unidirectional cell is allocated during joining

project. The final count of managed cells adapts to the amount

of traffic between nodes.

To initiate association with the network, a node receives a

Beacon packet containing Information Elements (IE) crucial for

synchronization with the slot frame. The synchronization is

maintained by analyzing packet reception and acknowledgment

times throughout the node's operation. Subsequently, the node

undergoes a joining process facilitated by the preferred Join

Proxy node [13]. The next step is the participation in routing

procedures defined by RPL ROLL protocol [14]. Initially, the

node listens for DIO (Destination-Oriented Directed Acyclic

Graph Information Object) packets to select a parent node.

(These DIOs and Beacons are periodically transmitted over a

shared advertisement cell. Note that all nodes within the

network work in non-storing mode and the DODAG Root role

is assigned to Border Router device. Therefore, every node,

while connected to the network, transmits its own Destination

Advertisement Object (DAO) packets to the DODAG Root

device. DAO packets are acknowledged using DAO-ACK

packets to verify the DODAG Root presence within the

network. DODAG Root stores information from all DAOs to

obtain routing information to construct source routes to all

devices on the network.

III. RELATED WORKS

Several network simulators, capable of simulating 6TiSCH or

similar communication protocols have already been presented

in the literature.

• TSCH-Sim simulator [15] is a modular, open-source project

incorporating the 6TiSCH model to simulate network

performance. It offers almost linear increase in simulation

time with increasing number of nodes. The high scalability

makes the simulator useful even with thousands of nodes.

Validation was carried out by comparison of various

parameters with COOJA and IETF 6TiSCH simulator.

Additionally, it features an energy consumption model which

was laboratory tested using the TI CC2650 SoC.

• IETF 6TiSCH simulator [16] offers similar functionalities

and performance as the abovementioned TSCH-Sim.

Simulated is only a 6TiSCH model not a full implementation

running on real devices. Authors also do not compare results

with metrics from real deployments. Validation is only

performed by comparison with OpenSim tool on relatively

small networks with the number of nodes less than ten.

• SEmulate [17] uses Hardware-in-the-Loop (HIL) approach.

The simulated stack down to the MAC layer may cooperate

with real hardware via a custom protocol. SEmulate is

capable of simulating the 6TiSCH network. However, such a

solution introduces an additional problem concerning the

6tisch network, where nodes are synchronized with high

accuracy. Any additional intermediate layer between MAC

and PHY can cause disruptive delay.

• OpenSim [18] uses the open source OpenWSN 6TiSCH stack

implementation in C language and links it with a custom

event simulator implemented in Python. One of the

interesting features of this tool is real-time simulation with

possible simultaneous interactions with physical devices and

networks. The main drawback is the scalability - the practical

use of this tool ends with small topologies of less than 10

nodes.

• COOJA simulation tool [19] was developed with a similar

approach to OpenSim. The Contiki operating system, which

integrates the 6TiSCH stack, can be run in conjunction with

COOJA simulator implemented in Java. The simulator

provides hardware emulation, channel model and a rich

graphical environment to explore many aspects of simulation.

This solution, however, like the OpenSim does not give

satisfactory simulation speed.

• TOSSIM [20] is an interesting example of a complex

approach to network stack simulation using the TinyOS

embedded operating system. The most interesting part is the

linear scalability of the simulation time with increasing

number of nodes. However, the Authors claim that simulation

reaches the real-time speed already at about 32 nodes which

makes it cumbersome to simulate networks consisting of

hundreds of nodes.

BIT-EXACT SIMULATION OF 6TISCH NETWORKS 1073

IV. COMPARISON OF COOJA AND OPENSIM

Our solution combines the running of the actual stack

implementation code along with hardware emulation of the

radio transceiver and rich radio propagation modeling. In that

regard our approach is similar to COOJA and OpenSim.

However, there are some important differences that we want to

point out:

• The 6TiSCH stack is fully implemented within the simulator,

which provides bit-exact simulation of the communication

protocol Exactly the same code runs in physical devices. The

stack code architecture is completely event-driven which

allowed us to run it within a popular OMNET++ discrete

event simulator framework. This framework provides

important features such as modularity, network description

and configuration language called NED, and an effective

mechanism for scheduling, managing and executing events.

• Despite its bit-exact nature, the achievable simulation time

for 1,000 nodes is about 2-7 times faster than real time on a

modern computer which makes it still usable at such scale.

• We employ standard log distance path loss model for radio

channel modelling. The characteristics of all links are

individually calculated with path loss, fading and mutual

interferences.

• The hardware emulation includes complex model of the radio

transceiver, including details such as crystal accuracy and

time drift, switching timings and more.

• Our tool features fast data acquisition using SQLite database,

which allows to gather important metadata during the

simulation from all the nodes in a very flexible manner.

V. 6TISCH STACK CONFIGURATION

6TiSCH can run on top of several physical layers (PHYs). In

our study Bluetooth Low Energy (BLE) 1Mbit PHY was used

instead of the widely used IEEE 802.15.4 250 kbps DSSS-

OQPSK-250 PHY layer for the 6TiSCH stack. We justify the

choice with the high popularity and low price of BLE-

compatible radio chipsets. Moreover, most of them are

compatible with 2Mbit or long range PHY which gives more

options for compromise between the range and speed of radio

communication. Main differences between aforementioned

PHYs are presented in the Table I.

The use of BLE 1Mbit PHY dictates a specific set of time

parameters that composes the MAC timings set (Fig. 2 and

Table II).

Table III presents important configuration parameters that

have a significant impact on the 6TiSCH communication

performance.

TABLE II
SHORT COMPARISON OF BLE 1MBIT PHY AND IEEE 802.15.4 250 KBPS

DSSS-OQPSK-250 PHY

Time parameters

(MAC PIB)
Value [µs]

macTsLenght 5000

macTsTxOffset 1700
macTsRxOffset 1200

macTsMaxTx 2000

macTsMaxAck 1000
macTsRxWait 1000

macTsAckWait 300

macTsTxAckDelay 1000
macTsRxAckDelay 850

TABLE III

IMPORTANT STACK CONFIGURATION PARAMETERS

Parameter Value

active time slots count in slotframea 21

slotframe length [slots] 61
mean Beacon sending interval every sixth slotframe

mean DIO sending interval every sixth slotframe

advertising channels (BLE assignment) 37, 38, 39
data channels (BLE assignment) 0-36

a during first 21 slots in slotframe node is active, during the remaining time

node is inactive

Fig. 2. TSCH slot timings with MCU and radio activity

TABLE I

SHORT COMPARISON OF BLE 1MBIT PHY AND IEEE 802.15.4 250 KBPS

DSSS-OQPSK-250 PHY

Parameter BLE 1Mbit

IEEE 802.15.4

DSSS-
OQPSK-250

modulation scheme 2GFSK DSSS-OQPSK

bitrate 1000 kbps 250 kbps
channel width 2 MHz 5 MHz

channel count in unlicensed

2.4GHz band
40 16

typical slot length 5000 us 10000 us

typical transceiver sensitivity ~-95dBm ~-100dBm

1074 M. KUBASZEK, ET AL.

VI. HARDWARE

The hardware used in the testbed were custom and stock

evaluation boards incorporating the popular nRF52832,

nRF52833 and nRF52840 SoCs from Nordic Semiconductor.

Radio output power in all devices was set to 4dBm . Any

differences in antenna and radio front-end performance can be

considered negligible in this experiment. The selected hardware

imposes an additional set of parameters that limits timings in the

MAC layer (Table IV).

VII. THE INTERNALS OF THE 6TISCH SIMULATOR

Figure 3 presents the overall architecture of the 6TiSCH

simulator. The stack provides an API for connection

management and data transmission that can be used by the final

Application. The stack also relies on a platform specific port. In

real-world deployments this port consists of drivers for

hardware peripherals such as timers and radio transceiver.

However, when running within the simulation, this port

emulates the required functions with the use of the OMNeT++

features such as messaging. Within this part of the simulator, we

also implement the radio propagation model and emulate

transceiver’s frame handling engine.

Fig. 3. Block diagram illustrating the 6TiSCH simulator architecture

The stack itself is implemented according to the principles of

event-driven architecture. All of the procedures within the stack

are invoked by underlying timer and radio transceiver. This

gives trouble-free integration with a discrete event simulator,

such as OMNeT++. However, discrete event simulation

neglects one aspect – the event code execution time. When

working with time critical code, which is the case for highly

synchronous 6TiSCH protocol, this may lead to inconsistent

simulation results. The solution turned out to be measuring the

execution time of time-critical procedures for each covered

hardware platform and providing that time within the port. Once

the stack has these parameters provided, it is able to schedule

time-critical procedures a certain amount of time in advance,

thus compensating for the additional required processing time

on a given platform.

The employed physical channel is modelled as a log distance

path loss model which is an extension to the Friis free space

model [21]. This model is relatively simple and adaptable to

many propagation environments from urban spaces to building

interiors. The log distance path loss formula (2):

 L(𝑑) = E ∗ 10 ∗ log10
𝑑

D
+ LFriis(D) + χt[dB] (2)

Where E[dB] is the environment dependent path loss

exponent, D is the close-in reference distance, LFriis[dB] is the

Friis path loss for an arbitrary distance D and χt[dB] is a zero-

mean Gaussian distributed random variable with σ expressed in

dB. Example results of the applied propagation model are

presented in the Fig. 4.

Fig. 4. Radio signal attenuation for the propagation models discussed

The radio channel model interacts with the transceiver

emulator. Fig. 5 shows the transceiver model used. It

corresponds closely to the state diagrams contained in the

reference manuals of many radio transceivers, since all of them

operate on a similar principle. The same general operating

principle is emulated by our emulator.

Fig. 5. The state machine emulating a radio transceiver

Key features of radio transceiver emulator:

• The simulation framework is aware of frame transmission

duration based on its length and bitrate.

• The transceiver model uses a custom PER (Packet Error Rate)

vs Input Power curve, measured in laboratory conditions for

TABLE IV

IMPORTANT STACK CONFIGURATION PARAMETERS

Hardware related parameters Value

sensitivity (1% of PER on 32B of PSDU) -93dBm*

max output power 4dBm
system clock accuracy +-20ppm

radio clock accuracy +-10ppm

radioTxRxStartOffset 40µs*
radioTxPrepare/radioRxPrepare 400µs*

radioAckTxPrepare/radioAckTxPrepare 40µs*

sleep current 5µA
tx current 17.5mA

listening current 13mA
required signal dynamics 15dB

a measured

BIT-EXACT SIMULATION OF 6TISCH NETWORKS 1075

the covered hardware platforms, which models the

transceiver sensitivity. A Similar approach is described as

Pister-Hack curve [16][18][19].

• Emulation of frame detection mechanisms. Probability of

reception of frame synchronization header with SFD (Start of

Frame Delimiter) and PSDU (PHY service data unit) are

calculated separately.

• Monitoring of S/I (signal-to-interference ratio) during

reception to make better decisions about frame collisions. If

radio frames transmitted in the same channel overlap a

collision occurs. However, if sufficient S/I ratio is

maintained, the stronger packet can still be received.

Including this effect adds another level of detail to the

simulation, increasing credibility of the results.

One important aspect of the implemented radio channel

model which heavily affects the performance is the preselection

of viable communication links. In general, when simulating

large, distributed topologies, every transmitted radio packet will

reach many receivers. Calculating the probability of correct

packet reception at many receivers is time consuming. It is thus

important to limit the receivers, eliminating nodes that due to

range of communication are almost certainly out of

communication range. . For static topologies this qualification

is done once at simulation startup and provides great

performance optimization. The fading effect is applied on every

transmission separately.

The hardware, that was tested was characterized and the

resulting parameters (see Table IV) were applied to the

transceiver emulator.

One additional feature of the developed simulation

environment is the possibility of using a high-entropy

pseudorandom generator as the randomness source for all

entities. This causes the simulator to generate exactly the same

results in specific runs, which is an invaluable feature in the

debugging process.

As shown in figure 3 the user’s application is also included in

simulation. In many cases the application utilizes the stack API

only which makes it easily portable across the simulation

framework and the target physical device.

VIII. DEPLOYMENT IN A TEST BED

In order to verify the simulation engine, we established a

testbed consisting of 15 battery powered nodes, 1 root node and

RPI3-based border router, as shown in Fig. 6.

Fig. 6. Illustration of the testbed setup

The nodes were placed within an industrial environment. The

test facility construction and finishing materials were mainly

metal elements, including doors. Three scenarios were

conducted:

A. Whole facility. Nodes were spaced throughout the facility,

including 3 nodes placed outside. This gave relatively large

link distances. The spacing was one node per adjacent room

or stairwell separated by metal doors.

B. Crowded social space. Nodes were set up within an

elongated social room with several small rooms spread along

it. Border router was at the far end. The length of the room

social area was about 60 meters.

C. Production area. 5 rooms separated by doors, extending

about 50 meters total in length.

IX. TESTING ENTITIES

For every testbed deployment, one 6-hour run was conducted

during which several testing entities were active. A test entity is

an application that runs in the system and benchmarks it. Note

that all data was collected by the network itself, so no additional

out-of-band communication mechanisms were used. As all

devices in the network are synchronized with hundreds of

microsecond accuracy, all processes in all connected devices

may be precisely timestamped. Hence every packet has its time-

of-flight precisely calculated with a resolution of ASN (absolute

slot number), that was set to 5ms. Every testing entity

implements packets counters, so the number of lost radio

packets can be determined.

Figure 7 presents the testing entities' activity during the whole

test run.

Fig.7. A chart showing the activity of testing entities in a test run

Tests were conducted on the following network operating

parameters:

• Topology stability and coverage. Examination of how fast

network becomes fully operable, parent selection, mutual

range and link metrics for all nodes.

• Uplink unicast traffic. Each node generates packet to one

common data sink. Each data packet is generated with

uniformly distributed delay in range <15s, 45s> and carries

28 bytes of data. Moreover, diagnostics service is running

generating constant uplink unicast traffic.

• Unicast ping-pong (1h). A packet source being outside of the

network generates individual packets to all nodes in the

network. Target node is selected randomly from the

connected ones. 24B ping data packet is generated with

uniformly distributed delay in range <1s, 3s>. Nodes

immediately respond to ping packet with 28 bytes long pong

packet.

• Multicast ping – unicast pong (1h). A packet source being

outside the network generates multicast packets to all nodes

within the network with a uniformly distributed delay value

in range <15s, 45s>. Every node responds with a pong packet

with a uniformly generated delay in range <0s, 5s> which is

1076 M. KUBASZEK, ET AL.

a way to offload the relatively high peak reply traffic

generated in a short period of time in the network.

• Firmware update (1h). During the test the task is to perform

the transmission of 10 kB of data to all nodes in the network,

simulating firmware update process. Data bulk is sent using

the multicast traffic . Data completion and consistency is

checked.

• Custom protocol (3h). During the inactive part of the

superframe, custom protocol was active. Its operation is out

of scope of this article.

Exactly the same testing scheme as conducted in real-life

deployment was simulated in the simulation environment.

However, the simulation did not reproduce the exact distribution

of the physical devices in space. For all simulation runs the

topology was created as a 5x3 grid with randomized edge

distance with uniform distribution in range <3.75m, 11.25m>

for scenario A, <5m, 15m> for scenario B and <7.5m, 22.5m>

for scenario C. The root node in all scenarios was placed in the

corner of the network.

X. OUTCOME OF THE STUDY

After analyzing the results from scenario A, it became clear

that the network nodes were too far apart. The network was

operating in edge conditions in which the connections between

nodes were too weak or even non-existent for several nodes. As

a result, run A was excluded from further analysis.

All simulation metrics for scenarios B and C were calculated

as averages of metrics from 10 random runs.

Figure 8 shows the dependence of PDR (Packet Delivery

Ratio) on RSSI (Received Signal Strength Indication) obtained

from the testbed and from two randomly selected simulation

runs. The first interesting observation was that the radio system

performed much worse in the field than during the laboratory

tests. At the testing facility, the effective sensitivity curve turned

out to be shifted and more flattened. The estimated sensitivity

was -75dBm, not -95dBm, as confirmed by prior laboratory

measurements. To solve this problem in the simulation, without

changing the parameters of the radio model, we set the standard

deviation of the fading to 10dB. In this way, the simulated

performance of the radio was close to that measured during field

tests.

Fig. 8. Simulated and real-life PDR vs RSSI diagram

During both runs B and C, the network became fully

operational, all devices connected and had a stable connection

over the network. The same results were obtained during the

simulation. However, as can be seen from Table V, there were

some significant differences between the simulation and actual

results in terms of network formation speed.

Figure 9 shows the graphs of nodes joining the network for

scenario C. The testbed experiments gave similar results, but

with a significant time offset. This is due to the fact that the

network took some time to disconnect from the previously

running network run before launching. This was our oversight,

and unfortunately, for organizational reasons, we could not

repeat the experiment. However, the dynamics of nodes

connecting the network were similar in all cases, most nodes

attached quickly except for the last few.

Fig. 9. Number of nodes joining the network vs running time

Figure 10 shows the network topologies obtained from real

runs and from two randomly selected simulations. The main

difference between scenario B and C is the depth of the network,

which affects the performance of data traffic. We decided not to

create topology metrics because two specific real-world runs

were not sufficient to collect a representative amount of data. It

turned out that in testbed launch C the network adopted a

specific topology and this had to do with the location of the

nodes. Traffic from almost the entire network is routed through

a single node 2 (Fig. 10b). This was evident in the results, where

the average packet delivery time was slightly longer than

expected.

TABLE V

TOPOLOGY FORMATION METRICS

Run Joined First [s] Median [s] Last [s]

B testbed 15 82 526 848

B simulation 15 49 88 298

C testbed 15 408 540 919

C simulation 15 48 128 593

BIT-EXACT SIMULATION OF 6TISCH NETWORKS 1077

Fig. 10. Topology snapshot from: a) scenario B in testbed, b) scenario C in

testbed, c) scenario B in simulation , d) scenario C in simulation

Table VI summarizes the metrics for unicast uplink traffic. In

terms of PDR, the data obtained from the simulation and the

testbed are similar. In terms of median packet transit time, the

simulation performed better - in the simulation, on average,

packets were delivered faster. This is due to the specific

topology formed by the real network. Figures 11 and figure 12

show the difference in round-trip packet flight time (RTT)

between real scenarios B and C. In such a small network, the

impact of the shape of the topology is visible as clustered ranges

of delay time.

Fig. 11. Histogram of time-of-flight of uplink unicast data packets (testbed

and randomly selected simulation of scenario B)

Fig. 12. Histogram of time-of-flight of uplink unicast data packets (testbed

and randomly selected simulation of scenario C)

The unicast ping-pong performance data is shown in Table

VII. As with the unicast uplink traffic study, the differences in

PDR are marginal. Since the RTT is split into downlink and

uplink components, it is clear that the main difference between

the simulation and the actual deployment is the uplink round-

trip time. The uplink transit time in scenario B in the real-world

test was better than in the simulations compared to scenario C,

where the simulation performed better. As with uplink unicast

traffic, the ping-pong delay histogram reveals topology-

dependent differences in RTT (Fig. 13 and Fig. 14).

Fig. 13. Histogram of RTT of unicast ping-pong queries (testbed and randomly

selected simulation of scenario B)

Fig. 14. Histogram of RTT of unicast ping-pong queries (testbed and randomly

selected simulation of scenario C)

TABLE VI

UPLINK UNICAST TRAFFIC METRICS

Run Sent TOF min [s] TOF median [s] TOF max [s] Lost PDR [%]

B testbed 10350 0.005 0.21 52.18 44 99.6%
B simulation 10750 0.005 0.20 13.52 1 100.0%

rel. diff. 4% 0% -6% -74% -99% 0.4%

C testbed 10343 0.005 0.45 41.31 105 99.0%

C simulation 10515 0.005 0.27 52.57 103 99.0%
rel. diff. 2% 0% -40% 27% -2% 0%

1078 M. KUBASZEK, ET AL.

Table VIII show the metadata of multicast traffic. The same

observation was made - for Scenario C, unicast uplink traffic

performed much better in the simulation. Nevertheless, the most

important parameters for the application, PER and multicast

downlink transit time, were very similar for both scenarios.

Delivery metrics were also generated. Table IX shows the

number of devices the packet reached. The worst, average and

best of all transmissions are given. In Scenario C in the real-

world test, it happened that one of more than a hundred multicast

packets did not reach the network correctly, hence only one

device was reached instead of all of them.

CONCLUSION

When developing scalable, distributed applications featuring

complex communication protocols it is crucial to be able to

reliably simulate them, prior to any large-scale deployments. A

simulation tool fit for that purpose should allow to run exactly

the same code in the simulation as in the physical device and

include as many important model details as possible.

In this article we’ve presented a tool that follows these

principles, by merging a portable, event-driven 6TiSCH stack

implementation with a popular discrete event simulator

(OMNeT++), detailed radio transceiver emulation and proper

radio channel modeling. By compiling the actual stack code

directly with the simulation engine, avoiding graphical user

overhead and introducing several important optimizations the

tool is able to efficiently simulate networks consisting of even

thousands of nodes. It became an important asset in our

professional work, in the process of designing, prototyping and

deployment of 6TiSCH-based radio communication systems.

The article also presents an effort made to validate the

simulator using an extensive set of test entities that were run in

a physical test bed consisting of 15 nodes. The same entities

were run in the simulation and results were compared. While

there are some differences, in general we’ve received very

similar network performance in simulation and the real world,

as confirmed by the values of the metrics presented.

We can thus conclude that the applied methodology has great

potential to be verified in much larger testbeds, which we plan

to do in the near future.

REFERENCES

[1] S. Al-Sarawi, M. Anbar, R. Abdullah, A Al Hawari, “Internet of things
market analysis forecasts,” Proceedings of the World Conference on Smart

Trends in Systems, Security and Sustainability, WS4, pp. 449—453, 2020.

A. Author, “Book style with paper title and editor,” in Title, 1nd ed.
vol. 1, C. Editor, Ed. City: Publisher, pp. 10–50, 2017.
https://doi.org/10.1109/WorldS450073.2020.9210375

[2] D. Dujovne, T. Watteyne, X. Vilajosana and P. Thubert, "6TiSCH:

deterministic IP-enabled industrial internet (of things)," in IEEE
Communications Magazine, vol. 52, no. 12, pp. 36-41, December 2014.
https://doi.org/10.1109/MCOM.2014.6979984

[3] X. Vilajosana, T. Watteyne, M. Vucinic, T. Chang, K. S. J. Pister,

“6TiSCH: Industrial Performance for IPv6 Internet-of-Things Networks,”

in Proceedings of the IEEE, vol. 107, n. 6, pp. 1153—1165, 2019.
https://doi.org/10.1109/JPROC.2019.2906404

[4] K. Pister, L. Doherty, “TSMP: Time Synchronized Mesh Protocol,”
IASTED International Symposium on Distributed Sensor Networks, DSN,
pp. 391—398, 2008.

[5] Y. Tanaka, K. Brun-Laguna, T. Watteyne, “Demo: Simulating a 6TiSCH

Network using Connectivity Traces from Testbeds,” in Transactions on

Emerging Telecommunications Technologies, vol. 30, n. 3, 2019.
https://doi.org/10.1109/INFCOMW.2019.8845200

[6] T. Watteyne, X. Vilajosana, B. Kerkez, ~et al., “OpenWSN: A standards-
based low-power wireless development environment,” European

Transactions on Telecommunications, vol. 23, n. 5, pp. 480—493, 2012.
https://doi.org/10.1002/ett.2558

TABLE IX

MULTICAST PACKET DELIVERY COUNT PER TRANSMISSION

Run
Worst delivery

count

Avg delivery

count

Best delivery

count

B testbed 15 82 526

B simulation 15 49 88
C testbed 15 408 540

C simulation 15 48 128

TABLE VII

UNICAST PING-PONG TRAFFIC METRICS

Run Sent

Time-of-flight [s]
Round-trip

Downlink Uplink Round-trip

Min Median Max Min Median Max Min Median Max Lost PDR

B test 1723 0.020 0.22 2.13 0.02 0.09 42.15 0.07 0.35 43.24 15.00 99.1%

B sim 1725 0.010 0.20 2.38 0.01 0.21 11.11 0.03 0.39 11.85 1.30 99.9%
rel. diff. 0% -50% -11% 12% -33% 146% -74% -57% 11% -73% -91% 1%

C test 1543 0.020 0.36 3.71 0.03 0.37 49.80 0.07 0.92 52.73 29.00 98.1%

C sim 1736 0.010 0.30 4.77 0.01 0.18 45.22 0.04 0.57 47.24 94.50 94.6%
rel. diff. 12% -50% -15% 29% -57% -52% -9% -48% -38% -10% 226% -4%

TABLE VIII

MULTICAST DOWNLINK – UNICAST UPLINK TRAFFIC METRICS

Run

Unique

delive-

ries

Time-of-flight [s]
Round-trip

Downlink Uplink Round-trip

Min Median Max Min Median Max Min Median Max Lost PDR

B test 1770 0.020 0.21 0.81 0.005 0.21 35.71 0.035 0.42 36.03 57 96.8%

B sim 1761 0.012 0.20 0.91 0.005 0.20 4.04 0.027 0.39 4.33 12 99.3%
rel. diff. -1% -43% -5% 13% 0% -5% -89% -24% -6% -88% -79% 3%

C test 1665 0.030 0.27 1.42 0.005 0.87 9.13 0.090 1.20 9.65 169 89.8%

C sim 1743 0.012 0.27 3.07 0.005 0.27 35.62 0.030 0.58 36.18 109 93.7%

rel. diff. 5% -60% -1% 117% 0% -68% 290% -67% -52% 275% -35% 4%

https://doi.org/10.1109/WorldS450073.2020.9210375
https://doi.org/10.1109/MCOM.2014.6979984
https://doi.org/10.1109/JPROC.2019.2906404
https://doi.org/10.1109/INFCOMW.2019.8845200
https://doi.org/10.1002/ett.2558

BIT-EXACT SIMULATION OF 6TISCH NETWORKS 1079

[7] X. Vilajosana, K. Pister, T. Watteyne, “Minimal IPv6 over the TSCH

Mode of IEEE 802.15.4e (6TiSCH) Configuration,” RFC 8180, May
2017. https://doi.org/10.17487/RFC8180

[8] R. C. A. Alves and C. B. Margi, "IEEE 802.15.4e TSCH Mode

Performance Analysis," 2016 IEEE 13th International Conference on

Mobile Ad Hoc and Sensor Systems (MASS), Brasilia, Brazil, pp. 361-
362, 2016. https://doi.org/10.1109/MASS.2016.054

[9] EmbeTech, embeNET Suite, https://embe.tech/embenet, access 15 April
2024.

[10] Cogitative Software, OMNeT++, https://omnetpp.org, access 15 April
2024.

[11] Q. Wang, X. Vilajosana, T. Watteyne, “6TiSCH Operation Sublayer

(6top) Protocol (6P),” RFC 8480, November 2018.
https://doi.org/10.17487/RFC8480

[12] T. Chang, M. Vucinic, X. Vilajosana, S. Duquennoy, D. R. Dujovne,

“6TiSCH Minimal Scheduling Function (MSF),” RFC 9033, May 2021.
https://datatracker.ietf.org/doc/rfc9033

[13] M. Vucinic, J. Simon, K. Pister, “Minimal Security Framework for
6TiSCH,” online, available: https://datatracker.ietf.org/doc/draft-ietf-
6tisch-minimal-security/01/

[14] R. Alexander, ~et.al., “RPL: IPv6 Routing Protocol for Low-Power and

Lossy Networks,” RFC 6550, March 2012.
https://doi.org/10.17487/RFC6550

[15] A. Elsts, "TSCH-Sim: Scaling Up Simulations of TSCH and 6TiSCH

Networks" Sensors 20, no. 19: 5663, 2020.
https://doi.org/10.3390/s20195663

[16] E. Municio, G. Daneels, M. Vucinic, ~et al., “Simulating 6TiSCH

networks,” Transactions on Emerging Telecommunications Technologies,
vol. 30, n. 3, 2019. https://doi.org/10.1002/ett.3494

[17] S. Boehm and H. Koenig, "SEmulate: Seamless Network Protocol

Simulation and Radio Channel Emulation for Wireless Sensor Networks,"
2019 15th Annual Conference on Wireless On-demand Network Systems

and Services (WONS), Wengen, Switzerland, pp. 111-118, 2019.
https://doi.org/10.23919/WONS.2019.8795495

[18] T. Watteyne, X. Vilajosana, B. Kerkez, F. Chraim, K. Weekly, Q. Wang,
S. Glaser, K. Pister, “OpenWSN: a standards-based low-power wireless

development environment,” Trans. Emerging Tel. Tech., 23: 480-493,
2012. https://doi.org/10.1002/ett.2558

[19] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne and T. Voigt, "Cross-Level

Sensor Network Simulation with COOJA," Proceedings. 31st IEEE

Conference on Local Computer Networks, Tampa, FL, USA, pp. 641-648,
2006. https://doi.org/10.1109/LCN.2006.322172

[20] P. Levis, N. Lee, M. Welsh, D. Culler, “TOSSIM: accurate and scalable

simulation of entire TinyOS applications,” in Proceedings of the 1st

international conference on Embedded networked sensor systems (SenSys
'03). Association for Computing Machinery, New York, NY, USA, 126–
137. https://doi.org/10.1145/958491.958506

[21] M. Viswanathan, “Wireless Communication Systems in Matlab,”
independent publication, 2020. ISBN: 979-8648350779.

https://doi.org/10.17487/RFC8180
https://doi.org/10.1109/MASS.2016.054
https://doi.org/10.17487/RFC8480
https://datatracker.ietf.org/doc/rfc9033
https://datatracker.ietf.org/doc/draft-ietf-6tisch-minimal-security/01/
https://datatracker.ietf.org/doc/draft-ietf-6tisch-minimal-security/01/
https://doi.org/10.17487/RFC6550
https://doi.org/10.3390/s20195663
https://doi.org/10.1002/ett.3494
https://doi.org/10.23919/WONS.2019.8795495
https://doi.org/10.1002/ett.2558
https://doi.org/10.1109/LCN.2006.322172
https://doi.org/10.1145/958491.958506

