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Abstract—This article presents an approach to building a bit-

exact simulation environment, capable of handling complex 

wireless communication stack such as 6TiSCH with enough 

performance, to be useful in large scale network topologies. The 

architecture of the simulator and the stack is presented along with 

the discussion of key features and design choices. The results of the 

simulation are compared to the results of extensive testbed 

experiments, which conclude that the designed tool can be used for 

practical design and verification of large distributed IoT 

applications. 
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I. INTRODUCTION 

N recent years, we are facing a new wave of innovation 

leading to the development of a branch of technology called 

IIoT (Industrial Internet of Things) [1]. It shapes the ways of 

connecting and exchanging data in extensive systems and 

provides tools for advanced analyses. Optimization of complex 

production processes requires collecting and transmitting large 

amounts of information. IIoT provides new solutions in the form 

of intelligent, wireless sensor networks and is the binder of the 

so-called Industry 4.0. New technologies in the field of mass 

wireless connectivity offer new opportunities as they become 

the missing link between massive amounts of data sources and 

cloud computing centers.  

Industrial applications require high reliability at a reasonable 

cost, hence the great interest in low power wireless systems 

[2][3]. In wireless networks, reliability, understood as 

uninterrupted availability of devices and meeting the QoS 

(Quality of Service) requirements, can be effectively delivered 

through the use of the Time Slotted Channel Hopping (TSCH) 

technique. This technique allows to achieve very high 

percentage of successful transmissions of even 99.9995% [4]. 

Modern applications require also high interoperability. One of 

the important efforts towards achieving compatibility between 

systems at the transport protocol level was undertaken by the 

IETF and resulted in the publication of the 6LoWPAN standard 

[5] [6]. The step that integrated both of these approaches was 

the adaptation of the 6LoWPAN stack to the TSCH extension 

as defined in the IEEE 802.15.4e standard, done by the IETF 

6TiSCH working group which resulted in the publication of [7].  
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While being reliable, efficient and highly scalable [8], 

6TiSCH networks are relatively complex, especially when 

deployed in potentially large topologies with hundreds of nodes.  

One of the key tools that allows to efficiently develop 

applications using 6TiSCH protocol stack in a reliable manner 

is an efficient and credible network simulator. 

In this paper we present the approach that led to the 

development of such a network simulator, which can effectively 

emulate complex wireless distributed systems using 6TiSCH 

communication protocol, acting as a digital twin. The simulator 

uses custom 6TiSCH implementation called embeNET [9] 

running within the OMNeT++ discrete event simulation 

framework [10]. We also present the results of the 

comprehensive study of a 6TiSCH-based network operating in 

2.4 GHz frequency band, using the Bluetooth LE 1Mbit PHY, 

that was used to verify and benchmark the simulator. An 

important aspect of the presented simulator is its bit-level 

accuracy, which in our case means that the simulated devices 

exchange exactly the same packet data (down to a bit level) and 

run the same network and application-level source code, built 

for the simulator. 

II. THE 6TISCH COMMUNICATION STACK 

6TiSCH combines the 6LoWPAN with IEEE802.15.4e-

TSCH MAC and Physical (PHY) layers. While challenges 

regarding efficient link layer resource allocation persisted, the 

introduction of the 6P/6top framework provided a solution [11]. 

This framework enabled the application of various TSCH 

timeslot allocation techniques. Additionally, 6TiSCH addressed 

node association and connection maintenance issues. The 

Minimal Scheduling Function (MSF) was also introduced as a 

straightforward decentralized timeslot allocator, enabling basic 

initial communication [12]. The 6TiSCH stack conducted by the 

IETF organization is currently in concluded state. 

Nodes within 6TiSCH networks follow a scheduled pattern 

that is mutually established between nodes for communication. 

All nodes are synchronized below millisecond precision.  

Within the schedule the nodes allocate slots for communication. 

Each slot is determined by Slot Offset and Channel Offset. 

Communication cells are organized within recurring slot frames 

(Fig. 1). A cell can be bidirectional, which means that there can 

be more than one node sending packets within a single cell. 
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The TSCH scheme must provide uniform channel 

randomization. The channel selection follows the formula 

below (1). Provided that the number of channels and slots count 

in slotframe are mutually prime numbers, the requirement for 

uniform randomization is satisfied. 
 

 

Fig. 1. TSCH timeslot organization diagram 

         chan = F(channelOffset + 𝐴𝑆𝑁)mod(nFreq))          (1) 

Where F is a function that maps channelOffset to set of 

channels, ASN (Absolute Slot Number) is a monotonic slot 

counter and nFreq is the number of available channels. 

 

There are a couple of cell types that can be distinguished: 

• Advertisement Cells. Predefined bidirectional cells within a 

slotframe that serve the purpose of network joining and parent 

selection. 

• Autonomous Cells. These unidirectional cells are designated 

for packet transmission when managed cells are not assigned, 

such as during the association phase.  

• Managed Cells. Unidirectional cells employed for managing 

data traffic. Negotiated on demand. In our implementation 

one obligatory unidirectional cell is allocated during joining 

project. The final count of managed cells adapts to the amount 

of traffic between nodes. 

To initiate association with the network, a node receives a 

Beacon packet containing Information Elements (IE) crucial for 

synchronization with the slot frame. The synchronization is 

maintained by analyzing packet reception and acknowledgment 

times throughout the node's operation. Subsequently, the node 

undergoes a joining process facilitated by the preferred Join 

Proxy node [13]. The next step is the participation in routing 

procedures defined by RPL ROLL protocol [14]. Initially, the 

node listens for DIO (Destination-Oriented Directed Acyclic 

Graph Information Object) packets to select a parent node. 

(These DIOs and Beacons are periodically transmitted over a 

shared advertisement cell. Note that all nodes within the 

network work in non-storing mode and the DODAG Root role 

is assigned to Border Router device. Therefore, every node, 

while connected to the network, transmits its own Destination 

Advertisement Object (DAO) packets to the DODAG Root 

device. DAO packets are acknowledged using DAO-ACK 

packets to verify the DODAG Root presence within the 

network. DODAG Root stores information from all DAOs to 

obtain routing information to construct source routes to all 

devices on the network. 

III. RELATED WORKS 

Several network simulators, capable of simulating 6TiSCH or 

similar communication protocols have already been presented 

in the literature. 

• TSCH-Sim simulator [15] is a modular, open-source project 

incorporating the 6TiSCH model to simulate network 

performance. It offers almost linear increase in simulation 

time with increasing number of nodes. The high scalability 

makes the simulator useful even with thousands of nodes. 

Validation was carried out by comparison of various 

parameters with COOJA and IETF 6TiSCH simulator. 

Additionally, it features an energy consumption model which 

was laboratory tested using the TI CC2650 SoC. 

• IETF 6TiSCH simulator [16] offers similar functionalities 

and performance as the abovementioned TSCH-Sim. 

Simulated is only a 6TiSCH model not a full implementation 

running on real devices. Authors also do not compare results 

with metrics from real deployments. Validation is only 

performed by comparison with OpenSim tool on relatively 

small networks with the number of nodes less than ten. 

• SEmulate [17] uses Hardware-in-the-Loop (HIL) approach. 

The simulated stack down to the MAC layer may cooperate 

with real hardware via a custom protocol. SEmulate is 

capable of simulating the 6TiSCH network. However, such a 

solution introduces an additional problem concerning the 

6tisch network, where nodes are synchronized with high 

accuracy. Any additional intermediate layer between MAC 

and PHY can cause disruptive delay. 

• OpenSim [18] uses the open source OpenWSN 6TiSCH stack 

implementation in C language and links it with a custom 

event simulator implemented in Python. One of the 

interesting features of this tool is real-time simulation with 

possible simultaneous interactions with physical devices and 

networks. The main drawback is the scalability - the practical 

use of this tool ends with small topologies of less than 10 

nodes. 

• COOJA simulation tool [19] was developed with a similar 

approach to OpenSim. The Contiki operating system, which 

integrates the 6TiSCH stack, can be run in conjunction with 

COOJA simulator implemented in Java. The simulator 

provides hardware emulation, channel model and a rich 

graphical environment to explore many aspects of simulation. 

This solution, however, like the OpenSim does not give 

satisfactory simulation speed. 

• TOSSIM [20] is an interesting example of a complex 

approach to network stack simulation using the TinyOS 

embedded operating system. The most interesting part is the 

linear scalability of the simulation time with increasing 

number of nodes. However, the Authors claim that simulation 

reaches the real-time speed already at about 32 nodes which 

makes it cumbersome to simulate networks consisting of 

hundreds of nodes. 
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IV. COMPARISON OF COOJA AND OPENSIM 

Our solution combines the running of the actual stack 

implementation code along with hardware emulation of the 

radio transceiver and rich radio propagation modeling. In that 

regard our approach is similar to COOJA and OpenSim. 

However, there are some important differences that we want to 

point out: 

• The 6TiSCH stack is fully implemented within the simulator, 

which provides bit-exact simulation of the communication 

protocol Exactly the same code runs in physical devices. The 

stack code architecture is completely event-driven which 

allowed us to run it within a popular OMNET++ discrete 

event simulator framework. This framework provides 

important features such as modularity, network description 

and configuration language called NED, and an effective 

mechanism for scheduling, managing and executing events. 

• Despite its bit-exact nature, the achievable simulation time 

for 1,000 nodes is about 2-7 times faster than real time on a 

modern computer which makes it still usable at such scale. 

• We employ standard log distance path loss model for radio 

channel modelling. The characteristics of all links are 

individually calculated with path loss, fading and mutual 

interferences. 

• The hardware emulation includes complex model of the radio 

transceiver, including details such as crystal accuracy and 

time drift, switching timings and more. 

• Our tool features fast data acquisition using SQLite database, 

which allows to gather important metadata during the 

simulation from all the nodes in a very flexible manner. 

V. 6TISCH STACK CONFIGURATION 

6TiSCH can run on top of several physical layers (PHYs). In 

our study Bluetooth Low Energy (BLE) 1Mbit PHY was used 

instead of the widely used IEEE 802.15.4 250 kbps DSSS-

OQPSK-250 PHY layer for the 6TiSCH stack. We justify the 

choice with the high popularity and low price of BLE-

compatible radio chipsets. Moreover, most of them are 

compatible with 2Mbit or long range PHY which gives more 

options for compromise between the range and speed of radio 

communication. Main differences between aforementioned 

PHYs are presented in the Table I.

The use of BLE 1Mbit PHY dictates a specific set of time 

parameters that composes the MAC timings set (Fig. 2 and 

Table II). 

 
Table III presents important  configuration parameters that 

have a significant impact on the 6TiSCH communication 

performance. 

 

TABLE II  
SHORT COMPARISON OF BLE 1MBIT PHY AND  IEEE 802.15.4 250 KBPS 

DSSS-OQPSK-250 PHY 

Time parameters  

(MAC PIB) 
Value [µs] 

macTsLenght 5000 

macTsTxOffset 1700 
macTsRxOffset 1200 

macTsMaxTx 2000 

macTsMaxAck 1000 
macTsRxWait 1000 

macTsAckWait 300 

macTsTxAckDelay 1000 
macTsRxAckDelay 850 

 

TABLE III  

IMPORTANT STACK CONFIGURATION PARAMETERS 

Parameter Value 

active time slots count in slotframea 21 

slotframe length [slots] 61 
mean Beacon sending interval every sixth slotframe 

mean DIO sending interval every sixth slotframe 

advertising channels (BLE assignment) 37, 38, 39 
data channels (BLE assignment) 0-36 

a during first 21 slots in slotframe node is active, during the remaining time 

node is inactive 

 

 
Fig. 2. TSCH slot timings with MCU and radio activity 

 
 
 

TABLE I  

SHORT COMPARISON OF BLE 1MBIT PHY AND  IEEE 802.15.4 250 KBPS 

DSSS-OQPSK-250 PHY 

Parameter BLE 1Mbit 

IEEE 802.15.4  

DSSS-
OQPSK-250 

modulation scheme 2GFSK DSSS-OQPSK 

bitrate 1000 kbps 250 kbps 
channel width 2 MHz 5 MHz 

channel count in unlicensed 

2.4GHz band 
40 16 

typical slot length 5000 us 10000 us 

typical transceiver sensitivity ~-95dBm ~-100dBm 
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VI. HARDWARE 

The hardware used in the testbed were custom and stock 

evaluation boards incorporating the popular nRF52832, 

nRF52833 and nRF52840 SoCs from Nordic Semiconductor. 

Radio output power in all devices was set to 4dBm . Any 

differences in antenna and radio front-end performance can be 

considered negligible in this experiment. The selected hardware 

imposes an additional set of parameters that limits timings in the 

MAC layer (Table IV). 

 

 

VII. THE INTERNALS OF THE 6TISCH SIMULATOR 

Figure 3 presents the overall architecture of the 6TiSCH 

simulator. The stack provides an API for connection 

management and data transmission that can be used by the final 

Application. The stack also relies on a platform specific port. In 

real-world deployments this port consists of drivers for 

hardware peripherals such as timers and radio transceiver. 

However, when running within the simulation, this port 

emulates the required functions with the use of the OMNeT++ 

features such as messaging. Within this part of the simulator, we 

also implement the radio propagation model and emulate 

transceiver’s frame handling engine. 

 

 
Fig. 3. Block diagram illustrating the 6TiSCH simulator architecture 

The stack itself is implemented according to the principles of 

event-driven architecture. All of the procedures within the stack 

are invoked by underlying timer and radio transceiver. This 

gives trouble-free integration with a discrete event simulator, 

such as OMNeT++. However, discrete event simulation 

neglects one aspect – the event code execution time. When 

working with time critical code, which is the case for highly 

synchronous 6TiSCH protocol, this may lead to inconsistent 

simulation results. The solution turned out to be measuring the 

execution time of time-critical procedures for each covered 

hardware platform and providing that time within the port. Once 

the stack has these parameters provided, it is able to schedule 

time-critical procedures a certain amount of time in advance, 

thus compensating for the additional required processing time 

on a given platform. 

The employed physical channel is modelled as a log distance 

path loss model which is an extension to the Friis free space 

model [21]. This model is relatively simple and adaptable to 

many propagation environments from urban spaces to building 

interiors. The log distance path loss formula (2): 

 

      L(𝑑) = E ∗ 10 ∗ log10
𝑑

D
+ LFriis(D) + χt[dB]           (2) 

 

Where E[dB] is the environment dependent path loss 

exponent, D is the close-in reference distance, LFriis[dB] is the 

Friis path loss for an arbitrary distance D and χt[dB] is a zero-

mean Gaussian distributed random variable with σ expressed in 

dB. Example results of the applied propagation model are 

presented in the Fig. 4. 

 
Fig. 4. Radio signal attenuation for the propagation models discussed 

The  radio channel model interacts with the transceiver 

emulator. Fig. 5 shows the transceiver model used. It 

corresponds closely to the state diagrams contained in the 

reference manuals of many radio transceivers, since all of them 

operate on a similar principle. The same general operating 

principle is emulated by our emulator. 

 

  
Fig. 5. The state machine emulating a radio transceiver 

Key features of radio transceiver emulator: 

• The simulation framework is aware of frame transmission 

duration based on its length and bitrate. 

• The transceiver model uses a custom PER (Packet Error Rate) 

vs Input Power curve, measured in laboratory conditions for 

           
       

       

       

      

      

      

      

      

      

      

           

 
 
 
 
  
 
  
 
 
 
 
  
  
 
 
 

     
                       
            
                       

TABLE IV  

IMPORTANT STACK CONFIGURATION PARAMETERS 

Hardware related parameters Value 

sensitivity (1% of PER on 32B of PSDU) -93dBm* 

max output power 4dBm 
system clock accuracy +-20ppm 

radio clock accuracy +-10ppm 

radioTxRxStartOffset 40µs* 
radioTxPrepare/radioRxPrepare 400µs* 

radioAckTxPrepare/radioAckTxPrepare 40µs* 

sleep current  5µA 
tx current 17.5mA 

listening current 13mA 
required signal dynamics 15dB 

a measured 
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the covered hardware platforms, which models the 

transceiver sensitivity. A Similar approach is described as 

Pister-Hack curve [16][18][19]. 

• Emulation of frame detection mechanisms. Probability of 

reception of frame synchronization header with SFD (Start of 

Frame Delimiter) and PSDU (PHY service data unit) are 

calculated separately. 

• Monitoring of S/I (signal-to-interference ratio) during 

reception to make better decisions about frame collisions. If 

radio frames transmitted in the same channel overlap a 

collision occurs. However, if sufficient S/I ratio is 

maintained, the stronger packet can still be received. 

Including this effect adds another level of detail to the 

simulation, increasing credibility of the results. 

One important aspect of the implemented radio channel 

model which heavily affects the performance is the preselection 

of viable communication links. In general, when simulating 

large, distributed topologies, every transmitted radio packet will 

reach many receivers. Calculating the probability of correct 

packet reception at many receivers is time consuming. It is thus 

important to limit the receivers, eliminating nodes that due to 

range of communication are almost certainly out of 

communication range. . For static topologies this qualification 

is done once at simulation startup and provides great 

performance optimization. The fading effect is applied on every 

transmission separately. 

The hardware, that was tested was characterized and the 

resulting parameters (see Table IV) were applied to the 

transceiver emulator. 

One additional feature of the developed simulation 

environment is the possibility of using a high-entropy 

pseudorandom generator as the randomness source for all 

entities. This causes the simulator to generate exactly the same 

results in specific runs, which is an invaluable feature in the 

debugging process. 

As shown in figure 3 the user’s application is also included in 

simulation. In many cases the application utilizes the stack API 

only which makes it easily portable across the simulation 

framework and the target physical device. 

VIII. DEPLOYMENT IN A TEST BED 

In order to verify the simulation engine, we established a 

testbed consisting of 15 battery powered nodes, 1 root node and 

RPI3-based border router, as shown in Fig. 6. 

 

 
 

Fig. 6. Illustration of the testbed setup 

The nodes were placed within an industrial environment. The 

test facility construction and finishing materials were mainly 

metal elements, including doors. Three scenarios were 

conducted: 

A. Whole facility. Nodes were spaced throughout the facility, 

including 3 nodes placed outside. This gave relatively large 

link distances. The spacing was one node per adjacent room 

or stairwell separated by metal doors. 

B. Crowded social space. Nodes were set up within an 

elongated social room with several small rooms spread along 

it. Border router was at the far end. The length of the room 

social area was about 60 meters. 

C. Production area. 5 rooms separated by doors, extending 

about 50 meters total in length. 

IX. TESTING ENTITIES 

For every testbed deployment, one 6-hour run was conducted 

during which several testing entities were active. A test entity is 

an application that runs in the system and benchmarks it. Note 

that all data was collected by the network itself, so no additional 

out-of-band communication mechanisms were used. As all 

devices in the network are synchronized with hundreds of 

microsecond accuracy, all processes in all connected devices 

may be precisely timestamped. Hence every packet has its time-

of-flight precisely calculated with a resolution of ASN (absolute 

slot number), that was set to 5ms. Every testing entity 

implements packets counters, so the number of lost radio 

packets can be determined. 

Figure 7 presents the testing entities' activity during the whole 

test run. 

 
Fig.7. A chart showing the activity of testing entities in a test run 

Tests were conducted on the following network operating 

parameters: 

• Topology stability and coverage. Examination of how fast 

network becomes fully operable, parent selection, mutual 

range and link metrics for all nodes. 

• Uplink unicast traffic. Each node generates packet to one 

common data sink. Each data packet is generated with 

uniformly distributed delay in range <15s, 45s> and carries 

28 bytes of data. Moreover, diagnostics service is running 

generating constant uplink unicast traffic. 

• Unicast ping-pong (1h). A packet source being outside of the 

network generates individual packets to all nodes in the 

network. Target node is selected randomly from the 

connected ones. 24B ping data packet is generated with 

uniformly distributed delay in range <1s, 3s>. Nodes 

immediately respond to ping packet with 28 bytes long pong 

packet.  

• Multicast ping – unicast pong (1h). A packet source being 

outside the network generates multicast packets to all nodes 

within the network with a uniformly distributed delay value 

in range <15s, 45s>. Every node responds with a pong packet 

with a uniformly generated delay in range <0s, 5s> which is 
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a way to offload the relatively high peak reply traffic 

generated in a short period of time in the network. 

• Firmware update (1h). During the test the task is to perform 

the transmission of 10 kB of data to all nodes in the network, 

simulating firmware update process. Data bulk is sent using 

the multicast traffic . Data completion and consistency is 

checked. 

• Custom protocol (3h). During the inactive part of the 

superframe, custom protocol was active. Its operation is out 

of scope of this article. 

Exactly the same testing scheme as conducted in real-life 

deployment was simulated in the simulation environment. 

However, the simulation did not reproduce the exact distribution 

of the physical devices in space. For all simulation runs the 

topology was created as a 5x3 grid with randomized edge 

distance with uniform distribution in range <3.75m, 11.25m> 

for scenario A, <5m, 15m> for scenario B and <7.5m, 22.5m> 

for scenario C. The root node in all scenarios was placed in the 

corner of the network. 

X. OUTCOME OF THE STUDY 

After analyzing the results from scenario A, it became clear 

that the network nodes were too far apart. The network was 

operating in edge conditions in which the connections between 

nodes were too weak or even non-existent for several nodes. As 

a result, run A was excluded from further analysis. 

All simulation metrics for scenarios B and C were calculated 

as averages of metrics from 10 random runs. 

Figure 8 shows the dependence of PDR (Packet Delivery 

Ratio) on RSSI (Received Signal Strength Indication) obtained 

from the testbed and from two randomly selected simulation 

runs. The first interesting observation was that the radio system 

performed much worse in the field than during the laboratory 

tests. At the testing facility, the effective sensitivity curve turned 

out to be shifted and more flattened. The estimated sensitivity 

was -75dBm, not -95dBm, as confirmed by prior laboratory 

measurements. To solve this problem in the simulation, without 

changing the parameters of the radio model, we set the standard 

deviation of the fading to 10dB. In this way, the simulated 

performance of the radio was close to that measured during field 

tests. 

 
Fig. 8. Simulated and real-life PDR vs RSSI diagram 

 

During both runs B and C, the network became fully 

operational, all devices connected and had a stable connection 

over the network. The same results were obtained during the 

simulation. However, as can be seen from Table V, there were 

some significant differences between the simulation and actual 

results in terms of network formation speed. 

 

 
 

Figure 9 shows the graphs of nodes joining the network for 

scenario C. The testbed experiments gave similar results, but 

with a significant time offset. This is due to the fact that the 

network took some time to disconnect from the previously 

running network run before launching. This was our oversight, 

and unfortunately, for organizational reasons, we could not 

repeat the experiment. However, the dynamics of nodes 

connecting the network were similar in all cases, most nodes 

attached quickly except for the last few. 

 
 

 
Fig. 9. Number of nodes joining the network vs running time 

 

Figure 10 shows the network topologies obtained from real 

runs and from two randomly selected simulations. The main 

difference between scenario B and C is the depth of the network, 

which affects the performance of data traffic. We decided not to 

create topology metrics because two specific real-world runs 

were not sufficient to collect a representative amount of data. It 

turned out that in testbed launch C the network adopted a 

specific topology and this had to do with the location of the 

nodes. Traffic from almost the entire network is routed through 

a single node 2 (Fig. 10b). This was evident in the results, where 

the average packet delivery time was slightly longer than 

expected. 

TABLE V  

TOPOLOGY FORMATION METRICS 

Run Joined First [s] Median [s] Last [s] 

B testbed 15 82 526 848 

B simulation 15 49 88 298 

C testbed 15 408 540 919 

C simulation 15 48 128 593 
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Fig. 10. Topology snapshot from: a) scenario B in testbed, b) scenario C in 

testbed, c) scenario B in simulation , d) scenario C in simulation 

Table VI summarizes the metrics for unicast uplink traffic. In 

terms of PDR, the data obtained from the simulation and the 

testbed are similar. In terms of median packet transit time, the 

simulation performed better - in the simulation, on average, 

packets were delivered faster. This is due to the specific 

topology formed by the real network. Figures 11 and figure 12 

show the difference in round-trip packet flight time (RTT) 

between real scenarios B and C. In such a small network, the 

impact of the shape of the topology is visible as clustered ranges 

of delay time. 

 
Fig. 11. Histogram of time-of-flight of uplink unicast data packets (testbed 

and randomly selected simulation of scenario B) 

 
Fig. 12. Histogram of time-of-flight of uplink unicast data packets (testbed 

and randomly selected simulation of scenario C) 

The unicast ping-pong performance data is shown in Table 

VII. As with the unicast uplink traffic study, the differences in 

PDR are marginal. Since the RTT is split into downlink and 

uplink components, it is clear that the main difference between 

the simulation and the actual deployment is the uplink round-

trip time. The uplink transit time in scenario B in the real-world 

test was better than in the simulations compared to scenario C, 

where the simulation performed better. As with uplink unicast 

traffic, the ping-pong delay histogram reveals topology-

dependent differences in RTT (Fig. 13 and Fig. 14). 
 

Fig. 13. Histogram of RTT of unicast ping-pong queries (testbed and randomly 

selected simulation of scenario B) 

Fig. 14. Histogram of RTT of unicast ping-pong queries (testbed and randomly 

selected simulation of scenario C) 

TABLE VI 

UPLINK UNICAST TRAFFIC METRICS 

Run Sent TOF min [s] TOF median [s] TOF max [s] Lost PDR [%] 

B testbed 10350 0.005 0.21 52.18 44 99.6% 
B simulation 10750 0.005 0.20 13.52 1 100.0% 

rel. diff. 4% 0% -6% -74% -99% 0.4% 

C testbed 10343 0.005 0.45 41.31 105 99.0% 

C simulation 10515 0.005 0.27 52.57 103 99.0% 
rel. diff. 2% 0% -40% 27% -2% 0% 
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Table VIII show the metadata of multicast traffic. The same 

observation was made - for Scenario C, unicast uplink traffic 

performed much better in the simulation. Nevertheless, the most 

important parameters for the application, PER and multicast 

downlink transit time, were very similar for both scenarios. 

Delivery metrics were also generated. Table IX shows the 

number of devices the packet reached. The worst, average and 

best of all transmissions are given. In Scenario C in the real-

world test, it happened that one of more than a hundred multicast 

packets did not reach the network correctly, hence only one 

device was reached instead of all of them. 

 

 

CONCLUSION 

When developing scalable, distributed applications featuring 

complex communication protocols it is crucial to be able to 

reliably simulate them, prior to any large-scale deployments. A 

simulation tool fit for that purpose should allow to run exactly 

the same code in the simulation as in the physical device and 

include as many important model details as possible.  

In this article we’ve presented a tool that follows these 

principles, by merging a portable, event-driven 6TiSCH stack 

implementation with a popular discrete event simulator 

(OMNeT++), detailed radio transceiver emulation and proper 

radio channel modeling. By compiling the actual stack code 

directly with the simulation engine, avoiding graphical user 

overhead and introducing several important optimizations the 

tool is able to efficiently simulate networks consisting of even  

 

thousands of nodes. It became an important asset in our 

professional work, in the process of designing, prototyping and 

deployment of 6TiSCH-based radio communication systems. 

The article also presents an effort made to validate the 

simulator using an extensive set of test entities that were run in 

a physical test bed consisting of 15 nodes. The same entities 

were run in the simulation and results were compared. While 

there are some differences, in general we’ve received very 

similar network performance in simulation and the real world, 

as confirmed by the values of the metrics presented.  

We can thus conclude that the applied methodology has great 

potential to be verified in much larger testbeds, which we plan 

to do in the near future. 
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