
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2024, VOL. 70, NO. 4, PP. 1105–1112
Manuscript received October 15, 2024; revised October, 2024. doi: 10.24425/ijet.2024.152513

The ASL Dataset for Real-Time Recognition and
Integration with LLM Services

Michał Chwesiuk, and Piotr Popis

Abstract—This study aims to investigate the impact of hand
gesture recognition techniques on the efficiency of American Sign
Language (ASL) interpretation, addressing a critical gap in the
existing literature. The research seeks new insights into the chal-
lenges of automated sign language recognition, contributing to a
deeper understanding of accessibility in communication for the
deaf and hard-of-hearing community. The study employs a quan-
titative approach, using a dataset comprising hand gesture images
representing the static letters of the ASL alphabet collected from
multiple users. Data were collected from various individuals to
ensure diversity and analyzed using machine learning models
to evaluate their effectiveness in recognizing ASL signs. The
results reveal that the machine learning models implemented
achieved a high accuracy rate in recognizing hand gestures,
indicating that person-specific variations do not significantly
hinder performance. These findings provide evidence that the
proposed dataset and methodologies can improve the reliability
of sign language recognition systems, offering significant impli-
cations for the development of more inclusive communication
technologies. This research offers a novel perspective on sign
language recognition, providing valuable insight that extends the
current understanding of gesture-based communication systems.
The study’s findings contribute to advancements in accessibility
technologies, highlighting areas for future research and practical
applications in improving communication for the Deaf and hard
of hearing community.

Keywords—dataset; gesture recognition; hand landmarks; ma-
chine learning; human-computer interaction; american sign lan-
guage

I. INTRODUCTION

THE American Sign Language (ASL) is a vital communi-
cation tool for the Deaf and hard of hearing communities

(DHH), which rely heavily on hand gestures to convey letters,
words, and sentences. As technology advances, there is an
increasing demand for systems that can accurately interpret
sign language through automated hand gesture recognition,
enabling accessibility in Human-Computer Interactions (HCI)
methods. Machine learning, particularly in the field of com-
puter vision, offers promising solutions to this challenge by
enabling the development of models that can recognize and
translate these gestures into text or speech in real time.

This paper introduces a novel dataset that focuses on hand
gestures representing the ASL alphabet. The collected images
are structured hierarchically, where hand gestures for each
letter of the ASL alphabet are organized by individual users.

Authors are with Warsaw University of Technology, Poland (e-mail:
Michal.Chwesiuk@pw.edu.pl, 01186032@pw.edu.pl).

Each user contributes a complete set of images representing
the 26 letters, offering a diverse range of hand gestures
that account for person-specific variations in sign language
expression. Prepared collection procedure provide option for
remote acquisition of additional set of images.

The dataset structure allows for training recognition algo-
rithms based on rule-based rules, as well as machine learning
algorithms, not only to recognize individual ASL letters but
also to generalize across different users, improving the robust-
ness and adaptability of the models in real-world scenarios.

In this study, we explore the structure and potential applica-
tions of this dataset, providing insights into how it can be used
to develop models that improve the accessibility and usability
of ASL recognition systems. Furthermore, we discuss the
implications of using person-specific data for improving model
generalization, addressing the challenges and opportunities in
the field of gesture recognition.

II. RELATED WORKS

Gesture recognition for ASL has garnered significant atten-
tion in the field of machine learning and computer vision. Var-
ious studies have contributed to the development of datasets,
algorithms, and methodologies to improve the accuracy of
gesture recognition systems. One prominent contribution is the
MS-ASL dataset, introduced by Vaezi Joze and Koller [1]. This
large-scale dataset serves as a benchmark for understanding
ASL and is crucial for training models to recognize static and
dynamic gestures. The comprehensive nature of this dataset
allows for robust evaluation and comparison of different
machine learning approaches, setting a foundation for further
advancements in ASL recognition. Second well known dataset
is MNIST [2] that offers images in size 28x28, but has large
variation in the number of samples per class, which may
be leading to convergence in predictions. In a recent study,
Abdulhussein and Raheem [3] focused on static hand gestures
of ASL using deep learning techniques. Their work demon-
strates the effectiveness of convolutional neural networks in
classifying static letters, indicating that deep learning models
can significantly enhance gesture recognition performance
when sufficient training data is available. Zaki and Shaheen
[4] explored a combination of new vision-based features for
sign language recognition. Their research highlights the im-
portance of feature extraction in improving recognition rates,
employing various techniques such as principal component

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/


1106 M. CHWESIUK, P. POPIS

analysis and hidden Markov models. This study underscores
the need for innovative approaches to capture the nuances of
hand gestures effectively. Furthermore, Núñez-Marcos et al.
[5] conducted a survey on sign language machine translation,
discussing the integration of gesture recognition systems with
translation algorithms. Their findings emphasize the potential
of combining recognition systems with natural language pro-
cessing techniques to facilitate real-time communication for
the hearing impaired, expanding the applicability of gesture
recognition technologies beyond classification. Similar study
[6], where translation is focused on real-time automatic speech
recognition rather than video gestures introduces app that
enable users to communicate with different languages, study
breaks the barrier in communication between people knowing
same language. Article [7] is the next study in which authors
adress the barrier of communication between deaf community
and current LLM models widely used in many types of
work, study also takes the step of processing motion-based
phases with LSTM and mediapipe [8], but does not aim
for communication with LLM-based popular services. Other
study by Vadalia and Chilukala [9] also presents a system for
real-time word-level ASL translation in to text, authors using
tensorflow [10] models, their work focuses on high accuracy
and speed, in comparision our approach focuses on building
sequences from captured letters, and another factor is that we
introduces Python based web interface connected with that is
available for every computer. Other study which approaches
ASL recognition and speech to text translation by Chinmay
Bhat and Vanita Agarwal [11] where authors where focused
on the various languages so not only ASL, but 300 different
sign-languages, application aims also to communicate signers
and non-signers using computer vision and text to speech
methodology through human-computer interaction.

These studies collectively illustrate the advancements in
the field of ASL gesture recognition, highlighting the need
for continued research to refine methodologies and improve
system performance, especially in light of the challenges posed
by limited training data.

III. METHODOLOGY

This section outlines the main stages involved in the pro-
posed real-time ASL interpretation (Fig. 1). It consists of three
main modules - identifying ASL letters from hand gestures,
transformation of the letters sequence into readable text image
classifier and sending request to external LLM model. In this
work, we will focus on integration with the ChatGPT service
widely used as artificial intelligence chatbot developed by
the OpenAI. Each module will be discussed separately in
the corresponding section below, involving used strategies for
classification and corrections.

A. Gesture Classification

The first part of the system involves detection and classifi-
cation of the ASL hand gestures captured through a collected
image (via webcam or external camera) into individual letters.
For this task, we experimented with two different methods:
hand landmarks detection with Random Forest Classification,

Fig. 1. Diagram of ASL Interpretation System workflow. The arrow heads
points to data transfer direction between modules and user of the system. The
additional alternative module contains functionality that allows adding new
gestures to the classifier.

and classifier based on Convolutional Neural Network (CNN)
architecture.

1) Hand Landmark Detection: For real time hand land-
mark detection, we utilized MediaPipe framework, a machine
learning based method developed by Google [12]. MediaPipe’s
Hand module is designed to efficiently detect and track 21 key
points on the human hand across a sequence of images or video
frames (Fig. 2). The software leverages a pipeline architecture,
combining a deep neural network for hand region detection
with a regression model that estimates landmark positions.
This approach allows for high-precision tracking, making it
suitable for applications in gesture recognition and human-
computer interaction (fig. 3). The framework’s cross-platform
compatibility and real-time performance were essential for our
application.

2) Random Forest Classifier: This algorithm works by
creating an ensemble of decision trees to classify input hand
gestures into the corresponding ASL letters. Despite being
a relatively simple model, the Random Forest classifier has
shown moderate success in classifying static ASL letters.

3) Convolutional Neural Network (CNN): The CNNs have
been proven to be highly effective in sign language recogni-
tion, including ASL and Indian Sign Language (ISL) gestures,
as they can learn spatial hierarchies of features from input
images [13]–[15]. To validate dataset presented in this work
and prove this thesis, we used LeNet and ResNet [16] CNN
architecture to identify ASL hand gestures [17]. It has a
relatively simple architecture compared to modern used CNNs,
which makes it computationally efficient and better suited for
real-time related tasks (Fig. 4).



THE ASL DATASET FOR REAL-TIME RECOGNITION AND INTEGRATION WITH LLM SERVICES 1107

0 WRIST
1 THUMB CMC 11 MIDDLE FINGER DIP
2 THUMB MCP 12 MIDDLE FINGER TIP
3 THUMB IP 13 RING FINGER MCP
4 THUMB TIP 14 RING FINGER PIP
5 INDEX FINGER MCP 15 RING FINGER DIP
6 INDEX FINGER PIP 16 RING FINGER TIP
7 INDEX FINGER DIP 17 PINKY MCP
8 INDEX FINGER TIP 18 PINKY PIP
9 MIDDLE FINGER MCP 19 PINKY DIP

10 MIDDLE FINGER PIP 20 PINKY TIP

Fig. 2. Hand landmarks detected by MediaPipe Tracking module, which
include key points for each finger and the wrist.

1a) 1b)

2a) 2b)

Fig. 3. Pairs of hand images with corresponding hand landmarks detected
using the MediaPipe framework.

Input Conv2D MaxPool2D Conv2D MaxPool2D

1@28x28

32@28x28 32@14x14

64@14x14 64@7x7

1x128

1x26

Fig. 4. LeNet CNN, generated with NN-SVG tool [17].

B. Transforming Letter Sequences into Human-Readable Text

Once the ASL letters are recognized from the frames, the
next step involves transforming these sequences into readable

Input Conv2D MaxPool2D Conv2D Conv2D Conv2D Conv2D Global AvgPool2D

3@224x224
64@112x112

64@56x56 64@56x56
128@28x28

256@14x14

512@7x7 512@1x1

1x26

Fig. 5. ResNet18 DNN architecture, generated with NN-SVG tool.

sentences. Due to the inherent noise and inconsistencies in
the gesture recognition process, raw letter sequences often
contain errors, such as repeated characters or incorrect letter
assignments. To address this, we tested several text processing
strategies to clean and refine noisy letter sequences before
querying the LLM service.

1) Basic Strategies for Text Processing: The following
text processing strategies were implemented to denoise letter
sequence after ASL recognision and improve the accuracy of
target sentences:

• Phonetic Correction Strategy: This strategy uses pho-
netic algorithms like Soundex to correct letters based on
their phonetic similarity [18]. While this method attempts
to match letters to likely sounds, it struggled with the
unique structure of ASL and was not highly effective.

• Remove Repetitions Strategy: This strategy removes
consecutive repeated characters from the letter sequence.
It proved useful in reducing noise but did not address
errors related to incorrect letter assignments.

• Autocorrection Strategy: Leveraging automatic correc-
tion techniques, this method attempts to correct individual
words within the sequence using a predefined dictionary
of words. Although it helps with simple errors, it fails to
handle context and sentence structure effectively.

• Levenshtein Correction Strategy: This approach uses
the Levenshtein distance to find the closest match to
misspelled words from a corpus of valid words [19].
Although it performs well in some cases, it does not
adequately account for context or grammar.

• Majority Vote Strategy: This strategy smooths the se-
quence of letters by using a sliding window to select the
most frequent letter within the window. It reduces some
noise but fails to consistently produce coherent sentences.

• LLM Strategy: This strategy leverages the GPT-4o
language model included in ChatGPT service to correct
noisy text sequences and transform them into coherent
and grammatically correct sentences. After applying the
initial noise reduction and preprocessing steps, the text is
passed to LLM for final corrections.

2) Combined Strategies for Text Processing: Among all
tested strategies, the LLM correction approach produced the
most acceptable results (tab. III). ChatGPT has proven its
ability to understand context and correct unreadable letter
sequences, transforming the output into readable and coherent
sentences. After preprocessing the letter sequences with one or
more of the strategies listed above, LLM strategy was able to
accurately interpret and refine the text. This approach yielded
the best results for the transformation of the ASL sequences



1108 M. CHWESIUK, P. POPIS

into human-readable sentences, making it a critical final step
in the pipeline.

To improve the overall quality of the output before send-
ing it to the Chatbot, we conducted additional tests that
involved combination of multiple preprocessing strategies in a
sequence. Each combination aimed to reduce noise and errors,
allowing the LLM to focus on refining the sentence structure
rather than correcting fundamental errors. Below are a few
examples of the combined pipelines:

1) Pipeline 1:
Remove Repetitions + Auto-Correction + LLM
This combination first removes repeated characters, then
applies autocorrection to fix basic spelling errors, before
sending the text to LLM for contextual and grammatical
correction.

2) Pipeline 2:
Phonetic Correction + Majority Vote + LLM
Phonetic correction is applied to adjust any misclassified
letters, followed by smoothing with the majority vote
strategy. LLM is then used to finalize the sentence and
ensure it’s coherence.

3) Pipeline 3:
Levenshtein Correction + LLM
Levenshtein correction is applied to find the closest word
matches, followed by LLM to correct sentence structure
and ensure grammatical accuracy.

4) Pipeline 4:
LLM
LLM correction without any preprocessing, to verify if
preprocessing does not reduce LLM efficiency.

IV. DATASET ACQUISITION

In this section, we detail the systematic approach undertaken
to create a robust and comprehensive ASL dataset tailored
for training real-time recognition models. The dataset forms
the cornerstone of our research, enabling the development
of an accurate and generalizable recognition system. The
process encompassed participant recruitment, data acquisition,
meticulous annotation, and thorough preprocessing to ensure
high-quality input for ASL recognistion model training.

Several existing ASL datasets employ controlled collection
environments to maintain consistency in background, lighting
conditions, and image parameters [20]. Although this method
is regarded as standard practice, it diverges from real-world
contexts in which the DHH community frequently use widely
accessible cameras in diverse settings for video communica-
tion. Our dataset collection approach is different from the
MS-ASL dataset, in which the captured images are sourced
from publicly available videos of individuals communicating
in ASL [21], but it is similar to collection method of MNIST
ASL dataset, except that the images in mnist [2] are in very
low quality and small size.

A. Collection procedure

For data collection, we introduce the ASL Data Collecting
package [22], designed to streamline the acquisition and
management of hand gesture datasets. This tool provides a

user-friendly command-line interface that enables the capture
of hand images with real-time landmark detection, making
it highly effective for generating large-scale ASL gesture
datasets. The package also includes features for uploading,
downloading, and managing files in dataset storage systems,
which are crucial for efficiently handling large datasets. By
automating these processes, the package significantly reduces
the manual effort required for data collection, thereby improv-
ing the efficiency of developing ASL recognition models and
providing the opportunity for continuous dataset expansion.

Developed in Python, the software leverages OpenCV and
MediaPipe for image processing and hand landmark detection
tasks. The ASL Data Collecting package has been made pub-
licly available on the Python Package Index (PyPI) repository,
allowing for easy and efficient expansion of the dataset with
additional labeled images [23].

Each data collection procedure consists of 26 segments,
corresponding to the collection of image samples for each
letter of the ASL alphabet. For each letter, the software
attempts to capture 100 images. To ensure the accuracy of
the collected images, real-time hand landmark detection is
employed, which provides feedback if the hand is not properly
detected. If the image collection process for a given letter
takes an excessive amount of time, the procedure automatically
transitions to the next letter. Upon completion, the collected
images are packaged and prepared for upload to the dataset
storage. For security and validation purposes, the upload
process is decoupled from the collection procedure, allowing
for the verification of images prior to their upload.

B. Dataset characteristics

We asked 16 volunteer person to conduct ASL dataset
collection procedure (age between 22 and 34 years). Before
the experiment, each participant was familiarized with the
motivation behind the data collection. The average participant
finished a session in approximately 7 minutes. During each
session, 100 images were collected for each of the 26 ASL
letters, with a few exceptions where full data was not obtained.
All sessions were successfully conducted. Example images
from dataset are presented in Table I.

The collected dataset, titled the ASL Hands dataset [24],
has been made publicly available on the Kaggle platform.
This provides a dedicated space for open access, enabling
researchers and developers to utilize the dataset for ASL-
related tasks and further research.

C. Dataset Evaluation

The class distribution was analyzed to verify that all ASL
letters were sufficiently represented across the datasets (Fig. 6).
Blue bars in the distribution chart indicate letters for which
data from all participants was successfully collected, while
red bars represent instances where data was missing for
specific letters. Completeness of the dataset was ensured by
capturing 100 images per letter, wherever possible. Gaps in
data collection were identified and steps were taken to either
recollect missing data or apply data augmentation techniques
to supplement underrepresented classes.



THE ASL DATASET FOR REAL-TIME RECOGNITION AND INTEGRATION WITH LLM SERVICES 1109

TABLE I
EXAMPLE IMAGES FROM COLLECTED ASL HANDS DATASET FOR SELECTED LETTERS AND RANDOM PARTICIPANTS

A G I L O R V Y

Fig. 6. The class distribution in the ASL Hands dataset. The blue bars
represent letters for which the dataset includes complete data from all
participants.

Fig. 7. The class distribution in the Mnist [2] dataset. The yellow bars
represent letters for which the dataset includes data.

Each frame was recorded only when hand landmarks are
present, which implies that hand are present. Correctness of
ASL sign in its corresponding class will be discussed in
Section VI by comparing gesture recognision results using our
dataset and Sign Language MNIST dataset [2].

V. IMPLEMENTATION

In this section, we demostrate implementation details of cus-
tom web application for communication with chatbox service
with ASL and discuss sign classification details.

the systematic approach undertaken to create a robust and
comprehensive ASL dataset tailored for training real-time
recognition models. The dataset forms the cornerstone of
our research, enabling the development of an accurate and
generalizable recognition system. The process encompassed
participant recruitment, data acquisition, meticulous annota-
tion, and thorough preprocessing to ensure high-quality input
for ASL recognistion model training.

A. Web Application

The primary objective of the application [25] is to enable
users to convert ASL hand gestures into readable text and
seamlessly transmit this text to a chatbot service. The user
interface is designed with an emphasis on simplicity and
accessibility, offering an intuitive and user-friendly experience.
The application captures gestures in real-time via a webcam,
allowing for smooth interaction. Once the gestures are detected
and converted into text, users have the opportunity to edit and
refine the output before sending it to a LLM such as ChatGPT
for further processing.

The application is developed using Python’s FastAPI frame-
work [26], chosen for its high performance, scalability, and
ease of integration. For real-time hand gesture detection,
MediaPipe is employed, which ensures accurate and efficient
gesture recognition, crucial for effective ASL interpretation.
To ensure portability and ease of deployment across different
environments, the entire system is containerized using Docker,
enabling deployment on any machine with minimal configu-
ration, thereby promoting broad accessibility.

Interface of the application is presented in Fig. 8. The
typical user flow begins with running the application in a
Docker container and passing the necessary configurations



1110 M. CHWESIUK, P. POPIS

for ChatGPT. Once the application is launched in a browser,
the user clicks the Start Camera button to initiate the real-
time gesture capture. As gestures are translated into text, the
user can press the Correct Text button to refine the output
into human-readable form. Finally, by clicking the Send Chat
button, the user submits the text to the chatbot service, and the
response from the LLM is displayed in a designated window
for further interaction. This streamlined process ensures an
efficient and user-friendly approach to ASL-based communi-
cation with chat services.

Fig. 8. Screenshot of the web application developed for communication
with a chatbot using ASL. The upper window displays the detected letters
derived from real-time ASL gesture recognition, the middle window shows
the preprocessed text, and the lower window contains the chatbot’s response
generated after processing the input.

B. Models

a) LeNet: architecture [27], visualization4, implemented
using the PyTorch framework, is a classic convolutional neural
network designed for grayscale images. For this project, it
processes 28x28 grayscale inputs, ideal for simpler image
tasks like handwritten digit recognition. The model’s structure
involves a series of convolutional and pooling layers followed
by fully connected layers, making it lightweight and efficient.
It’s a strong baseline for small-scale image classification
problems.

b) Resnet18: architecture [16], also implemented in Py-
Torch, works with 224x224 RGB images and uses residual
connections to solve the vanishing gradient problem in deep
networks. It’s deeper than LeNet, with 18 layers(counting
hidden), allowing it to handle more complex image data.
ResNet’s skip connections help retain information, making it
powerful for both simple and complex tasks.

c) Models training: The trained models for ASL gesture
recognition have been made publicly available on a GitHub
repository [28]. This repository contains training scripts for
a variety of machine learning models, including AdaBoost,
LeNet (CNN), ResNet18 (DNN), and Random Forest. All
models have been specifically adapted to recognize ASL
letters. These models were trained using both the MNIST
dataset [2] and the collected ASL Hands dataset. To ensure
consistency and facilitate deployment across diverse comput-
ing environments, the models have been containerized using a
Docker image.

Widely recognized for its superior performance in image
classification tasks [29]. Our CNN and DNN models was
trained using the ASL Hands Dataset [30] and enhanced
through image augmentation techniques to increase robustness.
The architecture of the model includes multiple convolutional
layers, pooling layers, and fully connected layers, all designed
to extract high-level features from the input frames and ac-
curately classify gestures into corresponding letters. Previous
works have demonstrated CNN architectures to be effective in
both static and dynamic gesture classification, with real-time
systems achieving impressive accuracy rates in challenging
environments [13], [15]. All images were preprocessed using
the MediaPipe Hands module to detect hand bounding boxes,
which are then cropped and used as input. Data augmentation
techniques, such as rotation and scaling, were also applied to
improve model generalization.

VI. EXPERIMENT RESULTS

The experiments were conducted to evaluate the effective-
ness of different machine learning models and text processing
strategies for real-time ASL interpretation. The primary focus
was on two parts: (1) gesture classification from images, and
(2) transforming noisy letter sequences into coherent, human-
readable text. For each experiment, we assessed the accuracy
of the entire pipeline from gesture classification to final text
output.

The following table summarizes the accuracy results for dif-
ferent combinations of image classification models (Random
Forest, ResNet, LeNet) and text processing strategies, with the
final correction step always involving ChatGPT.

TABLE II
MODELS EVALUATION

Evaluation Mnist ASL-hands
AdaBooster 15.7 36.5

Random Forest 82.0 96.8
LeNet 99.8 93.2

ResNet18 99.0 99.6

TABLE III
EXPERIMENT RESULTS FOR TEXT PROCESSING PIPELINES

Text Processing Pipeline Accuracy (%)
Pipeline 1 19.1
Pipeline 2 34.3
Pipeline 3 26.1
Pipeline 4 68.7

TABLE IV
EXPERIMENT RESULTS FOR GESTURE RECOGNITION AND TEXT

PROCESSING PIPELINES

Image Classification Text Processing Accuracy (%)
Model Pipeline

Random Forest Pipeline 4 50.0
LeNet Pipeline 4 25.0

ResNet18 Pipeline 4 50.0



THE ASL DATASET FOR REAL-TIME RECOGNITION AND INTEGRATION WITH LLM SERVICES 1111

TABLE V
AVERAGE TIME MEASUREMENT FOR TEXT PROCESSING PIPELINES

Text Processing Average Processing
Pipeline Time (s)

Pipeline 1 4.678
Pipeline 2 6.769
Pipeline 3 11.073
Pipeline 4 0.769

TABLE VI
TIME MEASUREMENT FOR GESTURE RECOGNITION MODELS

Image Classification Test 1 Test 2 Test 3 Test 4
Model (s) (s) (s) (s)

Random Forest 0:56.730 0:05.495 0:09.634 0:08.270
LeNet 0:26.464 0:03.127 0:05.269 0:06.333

ResNet18 0:54.109 0:05.701 0:07.747 0:08.510

Across all combinations, LLM consistently demonstrated
its superior capability in transforming noisy sequences into
coherent and grammatically correct sentences, highlighting its
indispensable role in the system.

A. Results and Observations

VII. RESULTS AND OBSERVATIONS

a) Gesture Classification Accuracy: The models tested
for ASL gesture recognition showed significant differences in
performance. ResNet18 achieved the highest accuracy with
99.6% on the ASL-hands dataset, as shown in Table II. LeNet
followed with 93.2%, and Random Forest also performed
well with 96.8%, the reason og behaviour is probably a not a
very big dataset, being an ensemble method of decision trees
can generalize better in such situations. However, AdaBooster
had a much lower performance, only achieving 36.5%, which
is consistent with expectations given its simplicity.

b) Text Processing Pipelines: Regarding text processing
accuracy, Pipeline 4 (ChatGPT-only) provided the best results
with 68.7% accuracy (see Table III). Pipeline 2, which
included phonetic correction and majority vote strategies,
achieved 34.3%, while Pipeline 3 and Pipeline 1 had lower
accuracies of 26.1% and 19.1%, respectively. Preprocessing
strategies like removing repetitions or applying majority voting
could oversimplify the input data or preprocess new errors.
The clear takeaway here is that using ChatGPT alone for text
correction yields better accuracy.

c) Gesture and Text Processing Pipelines Combined:
When combining gesture recognition models with text pro-
cessing pipelines (Table IV), the combination of ResNet18
and Pipeline 4 reached an accuracy of 50.0%, which was
the same result as Random Forest paired with the same
pipeline. Meanwhile, LeNet paired with Pipeline 4 had a
lower accuracy of 25.0%. These results suggest that models
like ResNet18 and Random Forest, when combined with
ChatGPT-based correction, are more reliable for generating
readable text from ASL gestures.

d) Time Measurements for Text Processing Pipelines:
The processing times of the text pipelines varied consider-
ably. As shown in Table V, Pipeline 3 took the longest,

averaging 11.073 seconds, likely due to the more complex
steps involved. Pipeline 2 had an average processing time
of 6.769 seconds, followed by Pipeline 1 at 4.678 seconds.
Unsurprisingly, Pipeline 4 (ChatGPT-only) was the fastest,
with an average of 0.769 seconds.

e) Time Measurements for Gesture Recognition Models:
As indicated in Table VI, the processing speeds for the gesture
recognition models also varied. Random Forest was the
slowest overall, with times ranging from 5.495 to 56.730
seconds. LeNet was faster, taking between 3.127 and 26.464
seconds, while ResNet18 had times between 5.701 and 54.109
seconds. While ResNet18 isn’t the quickest model, its high
accuracy makes the extra processing time a fair trade-off.

VIII. CONCLUSION

The results of our experiments shows that video communi-
cation with LLM is advanced problem, summarized in Table
IV, indicate notable differences in the accuracy of the various
machine learning models employed for American Sign Lan-
guage (ASL) gesture recognition. In summary, while both the
Resnet18 Neural Network (DNN) and Random Forest models
performed commendably, the LeNet was far away and stands
behind. CNN anyway stands out as the most effective approach
for ASL gesture recognition, the crucial difference between
Random Forest and Resnet18 was its learning time, and fact
that CNN required more data augumentation. The dataset,
consisting of images from only 16 individuals, each providing
100 images per class across 26 classes, poses limitations on
the amount of training data available. Given this restricted
dataset, the Random Forest model seems to work very well
for real-time ASL to text translation.

In contrast, the CNN’s architecture is better suited for ex-
tracting hierarchical features from images, allowing it to learn
more effectively from the limited data available. The findings
suggest that while Random Forest can still provide reasonable
accuracy, the CNN’s can find more details, which sometimes
leads to misclassification an required more data preprocessing.
The time efficiency of processing samples seems to be almost
same for Random Forest and Resnet18, but slightly slower for
simple LeeNet.

If more individuals were added to the dataset, it could sig-
nificantly enhance the models’ performance. A larger dataset
would enable the ensemble learning technique to capture
more variations in hand shapes, sizes, and styles, leading
to improved generalization and accuracy. Similarly, CNNs
would benefit from the increased data, allowing for a more
comprehensive feature extraction process and potentially re-
ducing overfitting. Furthermore, with a more extensive dataset,
researchers could explore more complex models or deeper ar-
chitectures, leading to further enhancements in gesture recog-
nition capabilities.

The current dataset, with its systematic collection of images
and corresponding landmarks, provides a solid foundation
for training machine learning models. It is structured to
facilitate model training by ensuring that each ASL symbol is
adequately represented across various individuals, promoting
diverse hand gestures and minimizing bias in training. This



1112 M. CHWESIUK, P. POPIS

ensures that models trained on this dataset can generalize well
to unseen data, an essential characteristic for robust gesture
recognition systems.

Future research could investigate ways to preapre more aug-
mentations of the existing dataset or explore transfer learning
approaches to further improve the models’ performance in
gesture recognition tasks with limited samples. The addition
of more diverse individuals would not only improve model
accuracy but also make the system more robust to variations
in hand gestures across different users, paving the way for
more effective real-world applications.

REFERENCES

[1] H. Vaezi Joze and O. Koller, “Ms-asl: A large-scale data set and
benchmark for understanding american sign language,” in The British
Machine Vision Conference (BMVC), September 2019.

[2] Tecperson, “Sign language mnist,” 2017. [Online]. Available: https:
//www.kaggle.com/datasets/datamunge/sign-language-mnist

[3] A. A. Abdulhussein and F. A. Raheem, “Hand gesture recognition
of static letters american sign language (asl) using deep learning,”
Engineering and Technology Journal, vol. 38, no. 6A, 2024.

[4] M. M. Zaki and S. I. Shaheen, “Sign language recognition using a
combination of new vision based features,” Pattern Recognition Letters,
vol. 32, no. 4, pp. 572–577, 2011.

[5] A. Núñez-Marcos, O. P. de Viñaspre, and G. Labaka, “A survey on sign
language machine translation,” Expert Systems with Applications, vol.
213, p. 118993, 2023.

[6] A. Gopi, S. D. P, S. T, J. Stephen, and B. VK, “Multilingual speech
to speech mt based chat system,” in 2015 International Conference on
Computing and Network Communications (CoCoNet), 2015, pp. 771–
776.

[7] J. T. S. Ru and P. Sebastian, “Real-time american sign language (asl)
interpretation,” in 2023 2nd International Conference on Vision To-
wards Emerging Trends in Communication and Networking Technologies
(ViTECoN), 2023, pp. 1–6.

[8] F. Zhang, V. Bazarevsky, A. Vakunov, A. Tkachenka, G. Sung, C.-L.
Chang, and M. Grundmann, “Mediapipe hands: On-device real-time
hand tracking,” 2020.

[9] M. R. Chilukala and V. Vadalia, “Translating sign language to english
text in real time using deep learning models,” in 2022 International
Conference on Electronics and Renewable Systems (ICEARS), 2022, pp.
1296–1301.

[10] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[11] C. Bhat, R. Rajeshirke, S. Chude, V. Mhaiskar, and V. Agarwal, “Two-
way communication: An integrated system for american sign language
recognition and speech-to-text translation,” in 2023 14th International
Conference on Computing Communication and Networking Technologies
(ICCCNT), 2023, pp. 1–7.

[12] C. Lugaresi, J. Tang, H. Nash, C. McClanahan, E. Uboweja, M. Hays,
F. Zhang, C.-L. Chang, M. G. Yong, J. Lee et al., “Mediapipe:
A framework for building perception pipelines,” arXiv preprint
arXiv:1906.08172, 2019.

[13] P. Sahane, “Duplex sign language communicator,” International Journal
for Research in Applied Science and Engineering Technology, 2021, a
system utilizing NLP and CNN for sign language translation focusing
on Indian Sign Language.

[14] A. Dumbre, S. Jangada, S. Gosavi, and J. Gupta, “Classification of indian
sign language characters utilizing convolutional neural networks and
transfer learning models with different image processing techniques,”
in 2022 3rd International Conference on Advances in Computing,
Communication, and Control (AIC), 2022.

[15] M. N. Saiful, A. A. Isam, H. A. Moon, R. T. Jaman, M. Das, M. R. Alam,
and A. Rahman, “Real-time sign language detection using cnn,” in 2022
International Conference on Data Analytics and Business Intelligence
(ICDABI), 2022.

[16] S. Targ, D. Almeida, and K. Lyman, “Resnet in resnet: Generalizing
residual architectures,” arXiv preprint arXiv:1603.08029, 2016.

[17] A. LeNail, “Nn-svg: Publication-ready neural network architecture
schematics,” Journal of Open Source Software, vol. 4, no. 33, p. 747,
2019.

[18] A. S. Dhanjal and W. Singh, “Tools and techniques of assistive technol-
ogy for hearing impaired people,” in 2019 International conference on
machine learning, big data, cloud and parallel computing (COMITCon).
IEEE, 2019, pp. 205–210.

[19] A. S. Lhoussain, G. Hicham, and Y. Abdellah, “Adaptating the leven-
shtein distance to contextual spelling correction,” International Journal
of Computer Science and Applications, vol. 12, no. 1, pp. 127–133,
2015.

[20] A. L. Barczak, N. H. Reyes, M. Abastillas, A. Piccio, and T. Susnjak,
“A new 2d static hand gesture colour image dataset for asl gestures,”
2011.

[21] H. R. V. Joze and O. Koller, “Ms-asl: A large-scale data set and
benchmark for understanding american sign language,” arXiv preprint
arXiv:1812.01053, 2018.

[22] Michal Chwesiuk and Piotr Popis, “Asldatacollector: Cli tool for
managing and processing hand image datasets for asl recognition.”
https://github.com/sqoshi/asldatacollector, 2024, accessed: 2024-10-20.

[23] P. Michał Chwesiuk, “Asldatacollector: A python package for collecting
asl image data,” 2024. [Online]. Available: https://pypi.org/project/
asldatacollector/

[24] Michal Chwesiuk and Piotr Popis, “Asl hands,” 2024. [Online].
Available: https://www.kaggle.com/datasets/piotrpopis/asl-hands

[25] P. Popis, “hands-to-text: A web application and python package for
converting sign language gestures into text.” https://github.com/sqoshi/
hands-to-text, 2024, accessed: 2024-10-20.

[26] S. Ramı́rez, “Fastapi framework, high performance, easy to learn, fast
to code, ready for production,” https://fastapi.tiangolo.com/, 2018.

[27] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” in Proceedings of the IEEE, vol. 86,
no. 11, 1998, pp. 2278–2324.

[28] Michal Chwesiuk and Piotr Popis, “htt-models: Package for training,
processing, and versioning models for hands-to-text.” https://github.com/
sqoshi/htt-models, 2024, accessed: 2024-10-20.

[29] N. Bhavana and G. S. Shenoy, “Empowering communication: Harness-
ing cnn and mediapipe for sign language interpretation,” in 2023 Inter-
national Conference on Recent Advances in Science and Engineering
Technology (ICRASET), 2023.

[30] H. V. Joze and O. Koller, “Ms-asl: A large-scale data set and benchmark
for understanding american sign language,” in The British Machine
Vision Conference (BMVC), September 2019.

https://www.kaggle.com/datasets/datamunge/sign-language-mnist
https://www.kaggle.com/datasets/datamunge/sign-language-mnist
https://www.tensorflow.org/
https://github.com/sqoshi/asldatacollector
https://pypi.org/project/asldatacollector/
https://pypi.org/project/asldatacollector/
https://www.kaggle.com/datasets/piotrpopis/asl-hands
https://github.com/sqoshi/hands-to-text
https://github.com/sqoshi/hands-to-text
https://github.com/sqoshi/htt-models
https://github.com/sqoshi/htt-models

	Introduction
	Related Works
	Methodology
	Gesture Classification
	Hand Landmark Detection
	Random Forest Classifier
	Convolutional Neural Network (CNN)

	Transforming Letter Sequences into Human-Readable Text
	Basic Strategies for Text Processing
	Combined Strategies for Text Processing


	Dataset Acquisition
	Collection procedure
	Dataset characteristics
	Dataset Evaluation

	Implementation
	Web Application
	Models

	Experiment Results
	Results and Observations

	Results and Observations
	Conclusion
	References

