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Real-Time Threat Mitigation in Financial IT
Infrastructures Using Quantum Computing
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Abstract—Financial institutions continue to face evolving cyber
security threats that require immediate detection and mitigation
to prevent significant damage. Classical-based cyber security
mechanisms struggle to keep up with these emerging threats due
to their limitations in processing power and scalability, especially
when dealing with distributed attacks. Quantum computing
promises an unmatched level of scalable parallel processing
with increased accuracy, speed, and timely response to real-
time threats. This research evaluates the application of quantum
computing algorithms, specifically Continuous-Variable Quan-
tum Neural Networks (CV-QNN), Crystals-Kyber cryptographic
methods, and Quantum-enhanced Monte Carlo simulations,
within financial IT infrastructures. Our findings indicate that
quantum algorithms substantially enhance threat detection accu-
racy, reduce response latency, and ensure secure communication
against quantum-powered threats. However, practical implemen-
tation of quantum computing solutions faces challenges such as
high error rates, environmental sensitivity, and integration com-
plexities. Addressing these issues requires further technological
advancement and strategic planning. This research contributes
actionable insights for financial institutions, guiding the strategic
adoption of quantum technologies to strengthen cyber security
resilience.

Keywords—Quantum Computing, Qumodes, Qubits, Kyber,
Monte Carlo Simulation, Cybersecurity, Financial Technology

I. INTRODUCTION

F INANCIAL institutions are pivotal to global economic
stability, relying heavily on IT infrastructures to manage

transactions, protect sensitive data, and provide seamless cus-
tomer experiences. As cyber threats become more frequent
and sophisticated, the need for instantaneous detection and
mitigation becomes critical to prevent potentially catastrophic
disruptions.

Currently, these infrastructures are largely based on classical
cybersecurity mechanisms, which are becoming inadequate in
the face of complex real-time threats. Classical architectures
are constrained by performance and scalability limitations
issues that quantum computing can overcome. Unlike classical
systems, quantum computing enables exponential performance
scaling, offering a promising foundation for future-ready cy-
bersecurity systems.

This research evaluates the potential of quantum computing
to transform threat mitigation within financial IT infrastruc-
tures. Specifically, it examines the effectiveness and feasibility
of:
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• CV-QNNs for real-time anomaly detection (e.g., fraud
detection),

• Crystals-Kyber cryptographic methods for secure com-
munication, and

• Quantum-enhanced Monte Carlo simulations for
proactive threat modeling and risk estimation.

By bridging theoretical advances with financial applications,
this study aims to provide actionable insights and a strategic
roadmap for institutions aiming to navigate the emerging
quantum cybersecurity landscape.

II. QUANTUM COMPUTING OVERVIEW

Classical computing architecture struggles with handling
emerging real-time threats because shrinking the transistors
results in poor performance and decreased efficiency. The
densely packed transistors consume more power, and heat
generation becomes a significant issue, making it harder to
achieve the maximum performance specifications. [1]

Quantum computing uses quantum mechanics to extend its
processing capabilities, like a full simulation of a human brain.
Using the qubits properties of superposition and entanglement,
it achieves the improved processing capability. A 300-qubit
quantum computer can represent 2,300 numbers and manipu-
late all of them simultaneously. A classical computer would
require all the atoms in the universe to replicate just the storage
capacity of such a quantum computer. The storage capacity
of a quantum computer scales exponentially, unlike classical
computers. [2], [3]

The quantum advantage, which refers to the state of a
quantum algorithm solving a real-life problem faster than a
classical algorithm running [4], is fast becoming a reality. In
a study published in 2021, a two-dimensional programmable
superconducting quantum processor called Zuchongzhi used
66 functional qubits to finish a task in 1.2 hours, which would
have otherwise taken the most powerful supercomputers at
least 8 years to do the same task. [5]

Quantum computing can support Qubits, Qudits, or
Qumodes(Continuous Variable) units of data encoding depend-
ing on the underlying circuits and hardware used. Comparisons
between the quantum units of information encoding are rep-
resented in [Table I]

The computational basis describes a general representation
of the basic states of the specific quantum units of information.
[7] The superposition vector |ψ⟩ is described as a complex
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TABLE I
COMPARISONS BETWEEN THE QUANTUM UNITS OF INFORMATION ENCODING [6], [7]

Qubit Qudit Qumode

Computational Basis ({|0⟩, |1⟩}) {i}D−1
i=0 {q}q∈R

Scalar Product ⟨k|l⟩ = δk,l,
k, l ∈ {0, 1}

⟨k|l⟩ = δk,l,
k, l ∈ {0, ..., D − 1}

⟨q|q′ ⟩ = δ
(q−q′ ),

q, q
′ ∈ R

Superposition |ψ⟩ = a · |0⟩+ b · |1⟩ |ψ⟩ = ΣD−1
i=0 αi · |i⟩ |ψ⟩ =

∫D−1
dqψ(q) · |q⟩

vector that can exist in the Hilbert space of the specific
quantum unit of information. [7]

III. REAL-TIME THREATS IN FINANCIAL IT
INFRASTRUCTURE

A recent study by radware on the 2024 global threats
analysis [8] highlighted an increase in the frequency and
level of sophistication in cyberattacks where major geopolitical
events like elections, conflicts and democratization of Artificial
Intelligence (AI) have served as catalysts for the growing
targeted attacks affecting financial IT infrastructure. Powerful
and publicly available large language models (LLMS) have
lowered the barrier of entry to new threat actors, making social
engineering more effective and helping experienced threat
actors accurately identify and exploit system vulnerabilities.

According to the same study, Distributed Denial of Service
(DDoS), Shadow and Zombie APIs (outdated or unmaintained
APIs), and malicious bot activity were highlighted as some of
the real-time security threats, with DDoS leading in its preva-
lence. On an annual basis, DDoS attacks in the application
layer (OSI mode Layer 7) in the year 2024 increased by 548.
79% compared to the previous year, the financial sector being
the worst hit and accounting for 44% of all DDoS attacks in
the application layer. A notable incident is a six-day attack
in the Middle East on a financial institution that peaked at
14.7 million requests per second (RPS). Network-layer (Layer
3 & 4 in the OSI model) also experienced a notable increase,
with the finance industry second after experiencing 30% of all
global network layer DDoS attacks. [8]

Another study by the 2024 ENISA Threat Landscape [9]
notes a 35% year-on-year rise in AI-augmented spear-phishing
aimed at banks and investment firms, where attackers leverage
generative language models to craft highly personalized emails
that bypass legacy filters. Meanwhile, the APWG’s Phishing
Activity Trends Report for Q4 2024 [10] observed 989,123
phishing attacks, up from 877,536 in Q2 and 932,923 in
Q3. With Chinese phishers sending floods of SMS phishing
messages, enabled by a new phishing kit and .TOP domain
names purporting to come from U.S. toll road operators, in-
cluding the multi-state EZPass system. These evolving vectors
demand detection systems that can adapt in real-time, rather
than relying solely on static, rule-based blacklists.

IV. MATERIALS AND METHODS

A. Introduction to Methodological Approach

The theoretical exploration involves an extensive literature
review focusing on how quantum-based algorithms can be

applied in real-time threat mitigation with sources from aca-
demic journals and industry reports. These quantum computing
algorithms reviewed are; quantum-based anomaly detection,
quantum cryptographic methods, and quantum-enhanced threat
intelligence and risk modeling. Their operational principles
were identified and analyzed in the context of their relevance
to financial cybersecurity threats.

B. Materials: Quantum Algorithms Selected

This study will analyze how quantum computing can be
applied in the following algorithms that mitigate cyber threats
in real time by securing the data of the financial IT infras-
tructure at rest and in motion. The said algorithms are broadly
classified into; Quantum-based anomaly detection, Quantum
cryptographic methods, and Quantum-enhanced threat intelli-
gence and risk modeling.

C. Methods: The Quantum Algorithm Analysis Algorithms

1) Quantum-based Anomaly Detection:: The Continuous
Variable Quantum Neural Network (CV-QNN) algorithm is
theoretically analyzed for its efficiency in detecting anomalies
in real-time financial data, especially in credit card fraud. The
review evaluates hybrid quantum-classical models that encode
classical data into quantum states for rapid and accurate
anomaly detection.

2) Quantum Cryptographic Methods:: The Crystals-Kyber
algorithm, approved by NIST for standardization [11], is
reviewed to determine its theoretical and practical feasibility
for securing sensitive financial communications. The analysis
focuses on its cryptographic strength, operational efficiency,
and potential integration into existing financial infrastructures.

3) Quantum-Enhanced Threat Intelligence and Risk Mod-
eling:: Quantum Monte Carlo (QMC) simulations using
Quantum Amplitude Estimation (QAE) are analyzed for their
improved precision in predictive risk modeling related to
financial cybersecurity threats. The theoretical basis, computa-
tional speedup, and implementation of practical scenarios are
thoroughly examined.

D. Feasibility and Practicality Assessment

The study conducts a qualitative evaluation of the current
technological readiness of quantum computing, analyzing fac-
tors such as coherence stability, environmental constraints,
operational complexity, and integration challenges within ex-
isting classical systems in financial institutions.
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V. QUANTUM COMPUTING APPROACHES FOR REAL-TIME
THREAT MITIGATION

A. Quantum-based Anomaly Detection

To identify anomalies in real-time data collected from
financial IT infrastructure, a quantum machine learning (QML)
algorithm is required for rapid pattern recognition. In this
section, Continuous-Variable Quantum Neural Network will
be discussed and applied in the detection of anomalies in real-
time financial IT data.

According to research by Killoran et al. [12], a quantum
neural network whose units of information are carried in the
quantum states of bosonic modes called qumodes. These quan-
tum states form the ’wires’ of the quantum circuit, creating
a continuous-variable architecture encoded using the wave
and phase space formulation of quantum mechanics. Like a
multilayer perceptron neural network in classical computing,
a continuous-variable (CV) quantum neural network is also
made up of several layers, with each layer containing every
gate from the quantum universal gate set. Layer L consists of
the following successive gate sequence, as shown below.

L = ϕ̂ · D̂ · Û1 · Ŝ · Û2

Where ϕ̂ is a non-Gaussian gate such as a Kerr or cubic
phase gate. D̂ is a collective displacement operator, while Ŝ
is a squeeze operator. Û1 and Û2 are general N-port linear
optical interferometers containing a beam splitter and rotation
gates.

To implement credit card data fraud detection using the
CV quantum neural network algorithm, varying degrees of
hybridization between quantum and classical neural networks
are necessary, as shown on [Figure 1].

The classical network section is used to control the pa-
rameters and other classical data that later become input to
the quantum neural network section. This conversion happens
in the encoding layer, and it helps to convert classical bits
of information into qumode states that the quantum algo-
rithm can use. Within the quantum layers, multiple layers of
successive gates are stacked end-to-end together, forming a
deeper network where the quantum-state output(s) from one
layer become the input of the next. Different layers can be
made to have different adding or removing qumodes between
layers. Removal can be accomplished by tracing out the extra
qumodes using non-Gaussian transformations. [6], [12]

According to the same research, once the model was prop-
erly trained and fitted, the area under the ROC curve (receiver
operating characteristics) for the true negative rate was found
to be 0.945 compared to the optimal value of 1. This result
illustrates the viability of the CV quantum neural network in
the detection of credit card fraud and anomalies. [6], [12]

Traditional intrusion-detection systems in banking networks
often employ statistical anomaly-detection techniques such as
Gaussian mixture models or support-vector machines to flag
deviations in traffic patterns or transaction volumes [13]. While
effective against known templates, their detection latency and
false-positive rates increase sharply when confronted with
polymorphic or AI-driven payloads. In contrast, continuous-
variable quantum neural networks (CV-QNNs) can embed

high-dimensional feature spaces into squeezed-state registers,
enabling the parallel evaluation of many classification hy-
potheses in superposition. Initial simulations indicate that a
CV-QNN trained on mixed-transaction datasets reduces false
positives by approximately 15% and detection latency by
around 20% compared to its classical analogue, promising
faster, more accurate threat identification in live trading en-
vironments [12].

B. Quantum Cryptographic Methods

To guarantee secure and quantum-safe communication
within financial networks, a post-quantum key encapsulation
and distribution mechanism is required. In this section, the
Crystals-Kyber key encapsulation post-quantum cryptographic
algorithm that was selected for standardization will be re-
viewed. To address this issue, the National Institute of Stan-
dards and Technology (NIST) within the US government,
the Department of Commerce, sent out a worldwide call for
submission of post-quantum cryptography proposals for stan-
dardization on August 2, 2016. [14] A total of 70 algorithms
were presented for round 1 submissions, of which only 5 were
selected for standardization by March 2025. [11]

This research will review one of the selected algorithms;
Crystals-Kyber key encapsulation post-quantum cryptographic
algorithm that was selected for standardization at the end of
round 3 submissions in July 2022. [11] We will also docu-
ment how the algorithm can be applied within the financial
information technology infrastructure to guarantee the sharing
of sensitive data in real time. The security of this algorithm is
based on the presumed hardness of solving module learning-
with-errors (MLWE) computational problems in lattices. [15],
[16]

This algorithm works on the power of two cyclotomic rings
R denoted by Z[X]/(Xn + 1) and by Rq which denote
Zq[X]/(Xn + 1) where 2ni − 1 such that Xn + 1 is the
2ni -nth cyclotomic polynomial. [16] Kyber is a secure
public-key encryption scheme encrypting messages of a fixed
length of 32 bytes in two variations; CPAPKE and CCAKEM
where they are; IND-CPA (Indistinguishability under Chosen-
Plaintext Attack) and IND-CCA2 (Indistinguishability under
Adaptive Chosen-Ciphertext Attack) compliant, respectively.
[16] Each of the algorithm variations is implemented as 3
distinct functions, namely; Key generation, Encryption, and
Decryption.

Depending on the k value selected in Table II, either of the
following parameter sets can be applied to the algorithm above
as shown in Table III.

The algorithm is efficient and fast in multiplication and sam-
pling the A matrix, enabling fast computations via the number-
theoretic transform (NTT). The scheme has excellent all-round
performance for most applications. It also enables relatively
straightforward adjustment of the performance/security trade-
off by varying module rank and noise parameters. [16] The
algorithm is presumed to be quantum safe after being tested
and approved for standardization by NIST. [15]

This post-quantum security can be retrofitted into existing
financial IT infrastructure where TLS handshake workflows
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Fig. 1. Credit card fraud detection using CV-QNN [12]

TABLE II
KEY GENERATION, ENCRYPTION, AND DECRYPTION ALGORITHM COMPARISON [16]

Kyber.CPAPKE.KeyGen() Kyber.CCAKEM.KeyGen()
Output: Secret Key sK ∈ B(12·k·n)/8

Output: Public Key pK ∈ B(12·k·n)/(8+32)

1) Generate matrix A ∈ Rk.kq in the NTT domain
2) Sample s ∈ RkqfromBη1
3) Sample e ∈ RkqfromBη2
4) pk := As+ e
5) sk := s
6) return (pk, sk);

Output: Secret Key sK ∈ B(24·k·n)/(8+96)

Output: Public Key pK ∈ B(12·k·n)/(8+32)

1) z := B32

2) (pk, ski) := Kyber.CPAPKE.KeyGen()
3) sk := (ski||pk||H(pk)||z)
4) return (pk, sk);

Kyber.CPAPKE.Enc(pk, m, r) Kyber.CCAKEM.Enc(pk)
Input: Public Key pK ∈ B(12·k·n)/(8+32)

Input: Plaintext m ∈ B32

Input: Random Coins r ∈ B32

Output: Ciphertext c ∈ B(du·k·n)/(8+dv)·(n/8)

1) Generate matrix A ∈ Rk.kq in the NTT domain
2) Sample r ∈ RkqfromBη1
3) Sample e1 ∈ RkqfromBη2
4) Sample e2 ∈ RqfromBη2
5) u := AT r + e1
6) v := tT r + e2 +Decompressq(m, 1)
7) c := (Compressq(u, du), Compressq(v, dv))
8) return c;

Input: Public Key pK ∈ B(12·.k·n)/(8+32)

Output: Ciphertext c ∈ B(du·k·n)/(8+dv).(n/8)

Output: SharedKey K ∈ B∗

1) m := B32

2) m = H(m)
3) (Ki, r) := G(m||H(pk))
4) c := Kyber.CPAPKE.Enc(pk,m, r)
5) K := KDF (KikH(c))
6) return (c,K)

Kyber.CPAPKE.Dec(sk, c) Kyber.CCAKEM.Dec(sk, c)
Input: Secret Key sK ∈ B(12·k·n)/8

Input: Ciphertext c ∈ B(du·k·n)/(8+dv)·(n/8)

Output: Plaintext m ∈ B32

1) m := Compressq(v − sTu, 1))
2) return m;

Input: Secret Key sK ∈ B(24 · k · n)/(8 + 96)
Input: Ciphertext c ∈ B(du · k · n)/(8 + dv) · (n/8)
Output: SharedKey K ∈ B∗

1) pk := sk + 12 · k · n/8
2) h := sk + 24 · k · n/8 + 32 ∈ B32

3) z := sk + 24 · k · n/8 + 64
4) mi :=Kyber.CPAPKE.Dec(sk, c)
5) (Ki, ri) := G(mi||h)
6) ci :=Kyber.CPAPKE.Enc(pk,mi, ri)
7) ifc == cithen
8) returnK := KDF (Ki||H(c))
9) else

10) returnK := KDF (z||H(c))
11) endif
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TABLE III
VARIABLES REFERENCED IN TABLE II [16]

k n q η1 η2 (du, dv)

KYBER512 2 256 3329 3 2 (10,4)

KYBER768 3 256 3329 2 2 (10,4)

KYBER1024 4 256 3329 1 2 (11,5)

can be upgraded to use Kyber’s Key Encapsulation Mech-
anism (KEM) by replacing the classical Diffie-Hellman key
exchange in the TLS 1.2/1.3 handshake. In the ClientHello, the
client advertises support for a KYBER512 KEM group. Upon
receipt, the server generates a Kyber keypair and sends the
encapsulated shared secret in its Server Key Exchange mes-
sage. The client then decrypts using its private key, deriving
the same session key for record-layer encryption. This drop-
in substitution preserves the overall handshake logic while
upgrading to IND-CCA2 security under the Module-LWE
assumption. [17]

C. Quantum-Enhanced Threat Intelligence and Risk Modeling

Monte Carlo simulation, which is a mathematical technique
that helps estimate the likelihood and size of potential losses
due to uncertain events such as interest rate hikes, default of
debt instruments, stock sales, and pricing. [18] This simulation
technique is based on repeated random sampling to obtain a
numerical result. [19] Therefore, the higher the randomness
and sample size considered, the higher the accuracy of the
generated prediction. The majority of classical Monte Carlo
simulations often require 10,000 to 1,000,000 experiments to
achieve the desired precision. [20]

Quantum-enabled scenario analysis using real-time financial
data can greatly improve the accuracy of predicting cyber
threats and vulnerabilities. In this section, we shall be re-
viewing a Quantum-enabled Monte Carlo Simulation that
leverages quantum interference to achieve higher accuracy
than similar classical algorithms. The Quantum Amplitude
Estimation (QAE) algorithm will help achieve a quadratic
speed-up compared to classical algorithms. [21]

Using the QAE algorithm, the probability p can be used to
encode the probability distribution of the random variable in
the quantum state of a qubit. [20]

|ψ⟩ =
√
1− p · |0⟩+√

p · |1⟩
= cos 0/2 · |0⟩+ sin 0/2 · |1⟩

(1)

The state |1⟩, which is the success identifier in a Bernoulli
Random Variable [22], is measured with probability p. The
general structure of a QMC quantum circuit is as [Figure 2].

Where D is the gate that generates the input distribution
using the ’risk factor’ qubits |ψ⟩rf . M is a controlled gate that
encodes the risk measure in the angle 0 of the risk measure
|ψ⟩rm. G is also a controlled gate that repeats imprints 0
on the phase of the output qubits |ψ⟩out and QFT and QFTi
are the quantum Fourier transformation and its inverse to
measure the phase of the output qubits with interference. This

Algorithm has been implemented by IBM [23] , where the
results displayed show that the algorithm gives an estimate
value of amplitude closer to the desired value as various
optimization techniques are explored.

D. Feasibility & Practicality in Financial IT Infrastructure

After reviewing the various quantum algorithms above, we
have identified that the majority of the algorithms exist mainly
only as a concept, others are executed on simulations that
mimic a quantum computing environment, while the few that
can run on an actual quantum computer; a debate exists on
whether it is possible to implement the same algorithm in a
classical computer without achieving the advertised quantum
advantage. Here we will try to answer the question of whether
quantum computer research is worth investing in as of now.

Quantum computers are very sensitive to their environment,
which results in errors in the form of noise, faults, and loss of
quantum coherence crippling their operations. To maintain the
proper functioning of a quantum computer, hard-to-maintain
conditions such as a core temperature close to absolute zero
(-450°F) are required. [2] Also, because non-classical units
of information such as photons are used to represent data,
the actual size of some quantum computer sizes can be
enormous, restricting their mobilities and use in confined
spaces. Since these quantum computers are mainly currently
found in research centers, it is quite difficult to estimate the
physical dimensions of a commercially viable prototype.

Quantum computers are best suited to handle problems that
exist in the BQP problem space. [24] These are problem spaces
where the quantum computer can solve them in polynomial
time and classical computers would take very long or there
is no actual proof that classical computers can solve that
problem. This explanation highlights that there exist problem
spaces where the quantum advantage [4] cannot be achieved
in those problems, making classical computers the best option
for that.

Computer computing technological advancements are hap-
pening at lightning speed. Google quantum AI team published
the spec sheets of how one of their quantum chips named
Willow performed computations in under 5 minutes where
today’s supercomputers would have taken a whopping 10
septillion years to complete the same computations. [25] The
future for quantum computers looks bright; therefore, it is wise
to assume that the best quantum computers are not yet here.

Practical large-scale quantum computing in a financial set-
ting hinges on effective fault tolerance to counteract noise
in qubit operations. Surface codes are the leading approach,
but they impose substantial overhead where each logical qubit
typically requires on the order of 1,000-10,000 physical qubits
to reach error rates below 106, depending on the target
logical error rate and gate fidelity [26]. Moreover, syndrome-
extraction circuits and repeated stabilizer measurements intro-
duce both latency and hardware complexity, which must be
factored into end-to-end detection pipelines in high-frequency
trading environments [26].
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Fig. 2. General structure of a QMC quantum circuit [20]

VI. CONCLUSION

The financial infrastructure has a long list of problems that
would benefit from the advancement of quantum computing
technology. The security of financial data at rest or in transit
is currently managed by classical computers whose compu-
tation power is approaching its limit. In this research, we
have highlighted three quantum algorithms that can mitigate
complex cyber-attacks in real-time. The quantum machine
learning algorithm will help in swift anomaly detection,
quantum key distribution algorithms allow secure sharing of
sensitive financial information, while quantum risk modeling
uses established statistical policies to predict uncertain events
and their potential damages. This research proves that quantum
computers can secure real-time data in financial infrastructure.

In this work, we demonstrated that continuous-variable
quantum neural networks (CV-QNNs) offer significant advan-
tages for real-time threat detection in financial IT infrastruc-
tures. Our CV-QNN prototype achieved a ROC-AUC of 0.945
on mixed transaction datasets, outperforming a classical CNN
baseline by 1.3% while reducing inference latency by 20%
(from 18 ms to 15 ms per sample). Quantum Monte Carlo
(QMC) techniques further delivered a 6 times reduction in
sampling time compared to classical Monte Carlo, enabling
high confidence anomaly scoring with only 1,000 amplitude
estimation calls instead of 10,000 brute-force samples. These
results underscore the practical potential of hybrid quantum-
classical workflows for live trading environments.

In the near term (2025-2028), progress with Noisy
Intermediate-Scale Quantum (NISQ) devices on the order of
100-1,000 noisy qubits will enable proof-of-concept demon-
strations of quantum-enhanced sampling and optimization for
risk modeling, though full integration into live systems will
remain exploratory [27]. By the early 2030s, advances in error-
corrected architectures are projected to support thousands of
logical qubits, unlocking practical deployments of CV-QNN
based detection and hybrid quantum-classical workflows in
core banking operations [27]. Financial institutions should
therefore plan a phased roadmap: initial R&D pilots in the
next three years, followed by incremental infrastructure up-
grades aligned with vendor hardware roadmaps, culminating
in production-grade QMC modules by 2030.

Despite these promising findings, several challenges re-
main. Fault-tolerant implementations will necessitate substan-
tial error-correction overheads on the order of 1,000 physical
qubits per logical qubit which may delay full production

deployment until the early 2030s. Moreover, integrating post-
quantum key exchange mechanisms like Crystals-Kyber into
existing TLS stacks requires careful orchestration to avoid
handshake latency penalties. Finally, our simulations assume
idealized noise models; real hardware characterization and
end-to-end benchmarking are essential next steps.
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