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Swarm Intelligence - conductorless orchestra

Bartlomiej Mastej

Abstract—Swarm Intelligence (SI) is a kind of Artificial
Intelligence that emerges from local interactions. By principle,
systems based on SI are decentralized - they do not have access
to the global knowledge. The initial study on SI was on the
natural swarms, e.g., ants, flocks of birds, and schools of fish.
Swarms have an ability to self-organize, which brings a unique
set of features and applications. Despite their origin in biology,
SI systems were adopted into technology. At the very beginning,
they were used to solve optimization problems, e.g., Ant Colony
Optimization and Particle Swarm Optimization; however, they
were later adopted in the field of robotics, which is called swarm
robotics. Although those are two primary fields of research in
SI, other applications, such as in telecommunications, are also
presented in this article. Furthermore, the problem of creating SI
systems and the current methods used for designing and modeling
the swarm systems are presented.

Keywords—Swarm Intelligence, Swarm Robotics, Swarm De-
sign, Swarm Modeling, Swarm Intelligence Applications

I. INTRODUCTION

WARM Intelligence (SI) is a special kind of artificial intel-

ligence that utilizes local interactions between independent
agents. Based on these interactions, a solution to a problem
emerges, without the involvement of global knowledge. The
agents are the basic elements of an SI system (a “swarm”).
Noticeably, they are relatively simple, hence their unit cost
is relatively low. As defines[!] on the one hand, the swarm
concept suggests a significant number of agents, randomness
or messiness, while the intelligence concept indicates that this
way of solving problems is nevertheless successful for some
reason.

Swarm Intelligence can be compared to an orchestra that
plays a concert without the participation of a conductor—an
element of global knowledge that is responsible for the
entirety of the piece played, including but not limited to the
synchronization of all instrumental sections. Each musician
knows the exact course of the entire piece by heart; however,
the authority of the conductor in the orchestra remains intact
for good reason.

Nonetheless, swarm intelligence engineers are trying to
achieve such an effect. The aim is to design a system that can
solve a given problem without access to global knowledge.
That is due to the unique features of SI systems [2][3]:

o Multitude - as the name suggests, SI consists of numerous
agents;
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« Self-organization - global behavior emerges directly from
local agent interactions;

e Scalability - the more agents in the swarm, the more
efficient the SI system;

« Robustness - the system continues to operate even if a
certain number of agents are lost;

o Flexibility - the ability of the system to solve tasks
unforeseen during design;

o Adaptivity - the system adapts its behavior to changing
circumstances;

o Superadditivity - in some cases, the aggregate performance
of the system may be greater than the sum of the
performance of individual agents [4];

II. SWARM INTELLIGENCE APPLICATIONS

The features of IR systems directly point to their possible
applications. By definition, these systems consist of numerous
relatively simple agents. Due to an agent’s relatively low
unit cost, the SI systems are simple to expand. In addition,
they can operate independently, thus without access to global
knowledge, enabling them to operate in places where access
to such knowledge is impossible or uneconomical. For this
reason, the primary focus of SI research is robotics systems.
However, swarm intelligence research initially evolved from an
attempt to describe biological systems. That research led in the
late 1990s to the creation of a whole family of optimization
algorithms, which also attracted research interest and still have
many applications. A certain niche is the use of IR systems
in telecommunications, both in routing and other distributed
systems.

A. Swarm Robotics

Swarm intelligence that deals with robotics has become
known as swarm robotics. The name is taken from swarms
found in nature, a strong source of inspiration for the field’s
pioneers. Swarm robotics is usually characterized by complete
decentralization - agents do not have elements of global
knowledge. Unlike optimization algorithms or simulations,
which possess the synchronization element, it results from
utilizing the hardware. As a result, robotics allows for research
into swarm intelligence principles, and it can gain the most
from research advances on SI.

1) Classification of behavior in swarm robotics: At this
point, only certain classes of swarm behaviors are in use.
However, in some robotic systems, implementing particular
behaviors is enough to increase autonomy or enable possible
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Fig. 1: Classification of swarming behavior proposed by [5].

self-repair. The division into well-studied behavior classes
originally proposed by [3] and later extended by [5] can be
seen in Fig. 1. The following paragraphs will present the
aforementioned classes.

a) Spatial Organization: - a class of behaviors responsible
for arranging robots and objects in a given environment. Spatial
organization includes the following behaviors:

o Aggregation - independent grouping of robots in a given
region. Example: aggregation of cockroaches [6].

« Pattern formation - maintaining distances between robots
to lay out regular and repeatable patterns. Example:
forming a lattice [7].

o Self-assembly - Physical connection of robots with each
other. Example: overcoming terrain obstacles [8].

o Object clustering and assembly - manipulation of the
objects distributed in the given space. Example: robots
assembling an object to match the pattern [9].

b) Navigation: - includes all behaviors referring to the
position of robots:

o Collective exploration - coverage of as much space
as possible, or searching a particular region. Example:
searching for disaster victims [10].

¢ Coordinated motion - collision-free movement of robots
in a given space. Example: the use of flying drones in
autonomous movement [11].

o Collective transportation - joint transport of cargo, which

is most often impossible to transport by a single robot.

Example: transportation of cargo by a swarm of molecular
machines [12].
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Collective localization - Enabling mutual orientation in
the field by swarm members. Example: creating a local
coordinate system [13].

c) Decision-making: - a class of behaviors relating to

broadly understood decision-making within the swarm:

Consensus achievement - making a joint decision for all
members of a swarm or its subgroup. Example: First-
Past-the-Post voting (single-winner voting rule) [14], also
known from the Ant Colony Optimization (the winner is
a the best solution in the certain area).

Task allocation - independent division of tasks by swarm
members. Example: forming letters by simplifying com-
plex shapes into simpler subtasks [15].

Collective fault detection - omitting defective robots (usu-
ally due to hardware failure) from swarm-level decisions.
Example: an immune system-inspired behavioral deviation
detection algorithm for a swarm of robots [16].
Collective perception - a view of a task from a swarm’s
perspective, using data collected by individual robots.
Example: in a swarm of flying drones, a common
perception of the environment is based on sensors placed
only on some of them [17].

Synchronization - common perception of time by robots,
for example, to coordinate the given task. Example: future
use of synchronization in harsh environments (e.g., oceans,
orbit) has been proposed [18].

Group size regulation - self-dividing into groups to
maintain a certain swarm size. Example: separating an
aggregated group into smaller groups of similar size [19]

d) Miscellaneous: - behaviors that do not yet have a

classified affiliation. Only the most important behaviors are
listed below:

Self-healing - the ability to repair swarm behavior after
an error caused by a single agent. In contrast to collective
error detection, it is not about the physical error of the de-
vice, but, for example, finding a local maximum/minimum
and bringing the entire swarm to this solution. Example:
stopping a search group by an occurring error on three
robots (the robots were standing, thus the target was
found), solved by an algorithm inspired by an immune
system [20].

Self-reproduction - the ability to produce new robots
in a swarm by the swarm itself, or the ability to copy
some of the behaviors of another swarm encountered.
That is a step toward evolutionary swarms being able to
independently improve the next "generation" from both
the hardware and behavioral side. Example: There is
currently no physical swarm with such abilities, but the
theory of a self-generating automaton was proposed in
the 1960s by Von Neumann (the book was published
posthumously) [21]. A swarm of material-robots has been
proposed, enabling the production of structures by joining
together to form larger robots [22].

Human-swarm interaction - allowing humans to commu-
nicate with and influence a collective of robots. Example:
changing swarm formation due to a human-made ges-
ture [23].
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2) Swarm robotics applications: The unique characteristics
of swarms, particularly their ability to function autonomously
and relatively low cost (the loss of a single, low-cost robot is
not particularly significant), make there a demand for swarm
robotics wherever a robot is difficult to control. In addition, it is
tempting to use them in missions with a high risk of failure or
in those requiring a significant number of robots. At the current
stage of Swarm Intelligence development, it is inefficient and
challenging to implement systems that do not have any global
knowledge elements. Nonetheless, when implementing a robotic
system to perform a specific task, certain behaviors can be
used to increase the performance and reliability of the system.
Hence, in Tab. I operating environments, possible applications
that are implemented by the presented behaviors, and industries
for which swarm robotics is targeted are presented. For each
industry, an article is also presented describing an example
of the application of swarm robotics for that industry. The
interested reader can also find swarms used in laboratories and
industry (as of 2020) in the article [5], Furthermore, a broad
overview of research and applications can also be found in the
article [24] from 2021.

3) Why don’t we see robotic swarms on a daily basis?:
Although we are able to identify specific types of behavior

found in swarms, a big problem is linking them together.

For this reason, achieving even simple behaviors without the
slightest bit of global knowledge is difficult. For example,
a swarm of centrally controlled drones can easily arrange
into complex shapes.(Fig. 2a). A commonly targeted task in
swarm robotics is shape formation because it combines multiple
behaviors, such as coordinated motion, pattern formation,
decision-making, and many others. Shape formation is not
the same as pattern formation - shapes, unlike patterns, can be
irregular. However, creating even simple shapes without global
knowledge is a significant problem. For example, the problem
of arranging letters, which are slightly more complicated shapes,

is challenging, and the results are not very spectacular (Fig. 2b).

That is why researchers often use mixed systems, for example,
in [38] GPS was used to simplify the task slightly.

4) What is the future of swarm robotics?: In 2020, an
article was presented [39] that discusses the future of swarm
robotics development in a rather loose way. Although it is
a visionary article, it was co-written by Prof. Marco Dorigo,
one of the pioneers of swarm intelligence and the creator of
the Ant Colony Optimization algorithm (Alg. 1). The article
estimates the development time of swarm robotics and potential
applications. According to the authors, by 2030, drone swarms
will be used widely in precision agriculture, infrastructure
maintenance, and military (for the sake of reconnaissance
missions). Subsequently, the development of swarm robotics
will be followed in underwater robotics and the entertainment
industry. At that time, robot swarms are expected to be found
commonly in cities. By the year 2050, robots’ swarms will
be used in space exploration and even in the precise delivery
of medicines inside the human body in the form of swarms
of nanorobots. It is worth mentioning that work on molecular
machine transportation is ongoing, as one can find in [12],
as well as the research on other applications. While the time
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horizon is hard to predict, the proposed applications seem likely
to appear in the future.

Science fiction literature also provides insight into the
development of swarm robotics, which is currently strongly
ahead of the technical possibilities. The strong connection
between literature and swarm robotics was noted in an article
titled "Swarm Robotics in Science Fiction" [40] in the journal
Science Robotics in 2021.

B. Optimization

Optimization algorithms based on the principles of Swarm
Intelligence have initiated intensive research into creating new
SI solutions. Earlier there was a study on the description of
biological systems Due to a certain simplicity and surprising
efficiency, for instance, in finding solutions to nonlinear
systems, as indicated in [41], they are used in: transportation
problems, network routing, route planning, robotics, scheduling,
energy systems, parameter optimization, image processing,
signal processing, and many others. To indicate the wide range
of applications, below are listed problems and methods of
solving them using these algorithms. In addition, review articles
for each problem are included, where the reader can find many
examples of applications and solutions to the problem. As
can be easily seen, the most common uses of optimization
IR algorithms are for task scheduling and route selection in
dynamic systems.

« Transportation engineering - optimization algorithms are
used to solve vehicle routing and task scheduling problems,
both for static and dynamic tasks [42].

« Photovoltaic energy storage systems - optimizing the use
of infrastructure [43].

o Path planning - similarly to the above examples, those
algorithms perform well not only in static environments
but also in dynamic ones [44].

o Network routing - due to swarm characteristics (scalability,
adaptability, resilience), optimization algorithms are used
to create routing protocols, e.g., in Wireless Sensor
Networks [45].

o Processor task scheduling - distributed task scheduling
for High-Throughput Computing (HTP) [46].

e Cloud computing - using IR optimization algorithms
to improve optimization and task allocation in cloud
computing [47].

C. Telecommunications

A non-obvious application of distributed intelligence is in
the domain of telecommunications networks. Due to their
characteristics, they have a partially decentralized structure.
The more decentralized a given network is, the greater the op-
portunities for applying SI appear. One of the first applications
of IR in telecommunications was, as already mentioned, the
optimization of routing in networks [48][49]. SI can also play
an important role in the 6G network nowadays. As indicated
in [50] the optimization algorithms based on swarm intelligence
will be an integral part of the computational intelligence layer,
along with the rest of the Al algorithms.
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TABLE I: Industries interested in swarm robotics by operational environment, applications, and behaviors.
Environment Application Behaviors Industry
warehouse work - cargo transportation sorting collective transportation, coordinated | logistics [24]
Land motion, task allocation, group size regu-
lation
construction pattern formation, self-assembly, aggre- | construction [22]
gation, self-reproduction
dynamic area coverage, scouting and logistics collective exploration, collective local- | military [25]
ization, collective perception
crop inspection, seeding, plant care, cereal har- | coordinated motion, collective trans- | agriculture [24]
vesting portation, pattern formation
Und d wydobycie, transport tadunku, eksploracja collective transportation, coordinated | mining [26]
ndergroun motion, task allocation, consensus
achievement, aggregation
poszukiwanie oséb zaginionych collective exploration, task allocation, | emergency services [27]
collective perception
environment monitoring collective perception, coordinated mo- | ecology [28]
Water tion
underwater exploration, underwater infrastruc- | collective exploration, coordinated mo- | extraction industry [29]
ture monitoring tion, collective perception, collective
localization
anti-submarine warfare, mine, mine clearing, | collective exploration, coordinated mo- | military [30]
reconnaissance, guarding tion, collective transportation, task allo-
cation, aggregation, pattern formation,
self-assembly, collective fault detection
Ai target finding and tracking, reconnaissance, | collective exploration, coordinated mo- | military [31]
1r guarding tion, collective transportation, task allo-
cation, aggregation, pattern formation,
self-assembly, collective fault detection
search for missing persons collective exploration, task allocation, | emergency services [10]
collective perception, coordinated mo-
tion
infrastructure inspection collective perception, coordinated mo- | construction [32]
tion, pattern formation
crop inspection coordinated motion, pattern formation, | agriculture [33]
collective perception
study of the surface of celestial bodies (e.g., | collective exploration, coordinated mo- | space exploration [34] [35]
Space seismographic study), creating spatial maps tion, collective perception
finding deposits of natural resources, natural | collective exploration, collective trans- | space mining [36]
resources extraction, transportation portation, coordinated motion, task allo-
cation, consensus achievement, aggrega-
tion
construction in orbit or on a celestial body collective transportation, aggregation, | space construction [37]
pattern formation, self-assembly, collec-
tive fault detection, self-reproduction

For example, Industrial Internet of Things (IloT) networks
have advanced perceptual capabilities, intelligent information
processing capabilities, and the ability to self-organize and self-
maintain [51]. For example, Industrial Internet of Things (IIoT)
networks have advanced perceptual capabilities, intelligent
information processing capabilities, and the ability to self-
organize and self-maintain. It is not difficult to see the strong
connection between IIoT and SI. Indeed, IIoT often makes use
of Wireless Sensor Networks (WSNs) in the communication
layer, which utilize SI elements. Because of its ability to
perceive its environment and process information, IIoT has
great potential to use various SI phenomena to multiply its
capabilities. One of the problems of the IIoT is the need to
process a significant amount of data collected from sensors.
Processing certain information locally could enhance the IIoT’s
capabilities and even increase its perception capabilities, as

in swarm robotics. However, at this point, this is a topic that
needs to be further studied.

These WSN flat networks are supposed to be self-
maintaining, so they mostly lack global knowledge elements
and often operate on an ad-hoc basis [52]. For this reason,
their use is most often found in hostile environments [51].
Hence, they can be considered a SI system. Many of the
routing algorithms used in WSNs are used in swarm robotics,
for example, the gradient communication paradigm [53] was
used by [54] to self-distribute tasks among the members of the
robotic swarm. Nevertheless, WSNs also utilize other swarm
intelligence applications to solve their problems. In particular,
mobile WSNs (MWSNs) use IR optimization algorithms to
optimize network coverage, sensor distribution, and routing
protocols, among other things [51]. Of considerable interest is
network coverage, since WSNs intended to operate in hostile
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(a) Drones using global knowledge
- used in the entertainment industry.
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(b) A swarm of drones forming shapes in a simulation
(I - letter "P", II - letter "W") [15].

Fig. 2: Comparison of centralized multi-robot system and the decentralized swarm.

environments may, for instance, be dropped from helicopters.
It is then necessary to put to sleep some of the nodes being
clustered in one place in order to optimize resources [55].

Although distributed intelligence is currently not commonly
found in telecommunications networks, the potential for
applications of certain SI elements is significant.

D. Distributed systems

Orchestration is a process used to automate the coordination
and management of distributed systems. Its name originates
from the coordination of the instruments in an orchestra, which
leads to the creation of music [56]. What is noticeable for
orchestration is the presence of at least one “conductor” - a
central/hierarchical center of central knowledge. The concept
of orchestration is most often found in the context of telecom-
munications. For example, in mobile networks (5G/5G+),
orchestration is commonly used to deal with network functions
running in the cloud or to manage virtualized infrastructure.
Orchestration is responsible for the continuous maintenance
of proper system operation and self-repair. This is done by
properly managing individual functions/subsystems and their
lifecycle, etc.

The use of a mobile network system using SI was proposed
in master’s thesis [57], in which there was proposed a system
which used mobile network terminals to create a consistent
computing infrastructure operating on an ad-hoc basis. The
proposed system aimed to operate in emergencies without
access to a central network. Therefore, the resources available
on the terminals were limited, and their mobility caused
rapid changes in the topology. By using elements of Swarm
Intelligence, including gradient communication, the system was
able to maintain a constant level of computing resources for
some time.

Swarm Intelligence systems could potentially support, and
in the future, even replace current orchestrators in some

applications. Orchestration is expensive - it is the hidden cost of
information exchange and processing. By designing a function
using SI, this cost could be significantly reduced. One of the
goals of swarm intelligence research is to create a logical
swarm - a distributed system in which there is no central
management, and the resources of the whole system are treated
as a consistent infrastructure. The capabilities of such a swarm
are to make efficient use of all the resources that belong to
it, regardless of how many they have at any given time. In
telecommunications, such an infrastructure comes under the
term Cloud-Continuum, but currently proposed solutions use
only global knowledge. Nevertheless, SI research can also
contribute to the efficiency of similar solutions by, for example,
partially offloading the orchestrator.

E. Biological systems

The original focus of research on Swarm Intelligence was the
study of the swarm behavior of relatively simple insects such
as ants, termites, and cockroaches. Although a single agent
(in this case, an insect) does not know the whole operation
of the system, the swarm exhibits various emergent behaviors
that enable them to achieve effects that are not observable
to a single agent, but are relevant to the system as a whole.
An example is the construction of termite mounds - they can
reach up to 30 meters in diameter and 6 meters in height.
These structures are designed to provide adequate ventilation
to regulate temperature and maintain sufficient humidity to
provide suitable conditions for the swarm development.

Slightly more advanced creatures that also exhibit collective
behavior include schools of fish and flocks of birds. The
study of biological systems and, more specifically, attempts to
describe the mathematical relationships in a swarm have led to
the development of optimization algorithms. The article [58]
provides further information concerning the description of



biological systems and their evolution into Swarm Intelligence
algorithms.

Another interesting use of Swarm Intelligence principles
is to describe decision-making and some of the behavior of
groups of people. This research aims to model some collective
behaviors so as to better understand why they appear and
how they affect group behavior. The idea is to support the
decision-making process in the future. Article [59] describes
the possible use of SI to describe human collective behavior,
while in article [60] one can find a survey on state of the art
in this domain. In article [61] there were shown similarities
between the neural cognition and collective cognition. Hence,
one can observe that indeed the SI is returning to its roots,
that is to describe biological systems; however, in a different
way than it used to.

III. PROBLEMS WITH SWARM INTELLIGENCE

The analogy of a conductorless orchestra can once again
be used to point out the fundamental obstacles to creating IR
systems. A well-prepared orchestra certainly had to practise
to play a given piece for a long time. Preparation must have
consisted of both independent and group practice. Furthermore,
such practice required an unchanging composition of the
orchestra. One can easily imagine that a well-prepared but
late-arriving musician would be able to join the orchestra and,
after a moment’s listening, play his part. The problem begins to
get more serious when the musicians in the orchestra have never
played with each other before and join or leave the orchestra
at random times. One can suppose that such an orchestra could
grow so large that certain sections of the instruments would be
inaudible to others. Furthermore, if a musician had a whole set
of pieces that could be played during such an unusual concert,
there is a certain chance that they would start playing the
wrong piece. Another musician who would join the orchestra,
hearing different tunes, could play something different - the
resulting music could significantly differ from the intended one.
In swarm intelligence, we are dealing with such an unusual
orchestra. Therefore, the goal of swarm intelligence engineers
is to compose such a concert for each section of instruments
that the resulting music meets certain expectations. Standard
complex systems have an element of global knowledge - a
conductor, who can make such a system play the whole piece
more or less correctly; however, it can be overloaded when the
system grows enough.

On the basis of the aforementioned example, one can easily
observe the problems with the Swarm Intelligence systems.
The main problem is to find a solution to combine the behavior
of a single agent (micro level) with the emergent behavior
of the whole collective (macro level) without any centralized
synchronization element as shown in Fig. 3. As pointed out
by [62] currently there are no universal methods which would
allow for join of the micro level behavior with the macro level
behavior. SI systems engineers are frequently inspired by the
behaviors observed in the nature [3]. Nevertheless, they have
significant limitations of applications.

Swarm intelligence systems can be divided into layers of
abstraction that interact with each other. Such a decomposition
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idea for swarm design was proposed by [63], where a
division was divided into four layers for unmanned aerial
vehicle: decision-making layer, path planning layer, trajectory
generation layer, and redundancy management layer Continuing
with the idea, but focusing more on the characteristics of the
micro-macro swarm there is proposed another decomposition
in Fig. 4. The micro level (physical layer) directly describes the
capabilities of a single agent, while the macro level (intelligence
layer) describes the operation of the entire system. All layers
are involved in linking the individual-collective behavior, and
each layer has different tasks (Tab. ??). An additional problem
is that the layers directly influence and constrain each other
- for instance, the physical layer capabilities of an individual
agent determine its perception and communication capabilities,
which also influence the decision. The collective decision,
on the other hand, influences the behavior of a single agent,
indirectly influencing other agents and therefore subsequent
decisions. Although it is possible to decompose IR systems into
layers and design each layer separately, combining them into
a coherent system remains difficult. However, decomposition
makes it possible to look at specific types of behavior in more
detail, thereby sorting out the SI system in some way.

The process of creating swarm intelligence systems is
divided into two stages: design and modeling. SI system design
is responsible for the overall planning process of a given
system, while modeling is responsible for the mathematical
representation of the designed system.

IV. SI SYSTEMS DESIGN

Returning to the concert analogy, the design of SI systems
can be compared to the general idea of a musical piece. More
precisely, it is about the goal the piece is supposed to achieve
- the composer has to determine whether it should be an opera
telling a story or a Mazurka intended to evoke certain emotions
and sensations in the audience. The composer determines
what should happen and in what parts. That is how the SI
system design looks like - the SI systems engineer at this level
determines what goals the swarm is supposed to achieve, what
the stages of actions are supposed to be, and what the expected
behavior and interactions are.

When discussing the design of SI systems, one usually
assumes the design of swarms of robots. It results from the fact
that they represent independent agents, and unlike biological
systems, it is possible to design new behaviors. Biological
or optimization behavior models are briefly described in the
section V, as they most often specify a single behavior, rather
than a set of behaviors, as it happens at the design stage.

Designing swarm intelligence systems is a difficult task due
to the need to combine micro and macro levels. For this reason,
swarm design methods for solving specific tasks have been
developed over the years, of which three main categories can
be distinguished [3][64]:

o behavior-based design;
o supported design;
« automatic design;
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Fig. 3: Micro-macro perspective on Swarm Intelligence.

575

Z N\ Macro level
Intelligence
layer
Decision-making
layer
Communication
layer
Observation
layer
Physical
layer
N/ Micro level

Fig. 4: Division of th SI systems into layers.
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TABLE II: Tasks in different layers of SI systems.

Layer Description

Task

Physical
virtual)

the agent’s activity on its environment (physical or

- controlling the agent
- the agent’s impact on the environment

Observation agent and swarm perception capabilities [5]

- agent’s perception capabilities
- collective perception of the whole swarm

Communication communication between agents

- information exchange between agents (e.g., type of the
communication, communication scheme)

- information exchange in the group of agents (e.g., message
routing) [15]

Decision-making decision-making agent <> swarm

- collctive decision making (e.g. voting, majority rule) [64]
- local decision-making (e.g., leader-follower [65], observation
based [06], stigmergy based [67])

Intelligence observed high level behavior

- collective task solving by joining and changing the behaviors
of lower layers.

A. Behavior-based design

Behavior-based design was proposed by [3] as an iterative
process of designing, testing, and improving the behavior of
a single robot to achieve a complex global effect. Although
a design process assumes a lot of trial and error, it remains
the most popular swarm design method. Most often, designing
with this method uses observation of multiple behaviors found
in nature, thus improving the process (e.g., the cockroach
aggregation presented in Fig. 6).

a) (Probabilistic) Finite-State Machine: As [3] points out,
the most popular method for designing robot swarms is PESM
(Probabilistic Finite-State Machine). That is primarily due to
its relative intuitiveness - when designing swarms based on
PFSM, one focuses on the expected behavior of the swarm.
The approach is usually based on a top-down approach - the
engineer focuses on achieving the goal with specific states and
transitions from them for the entire system. Subsequently, one
designs the lower level of abstraction (a single agent behavior
for most cases) to close the gaps as much as possible. Finite-
state machines allow both micro-level and macro-level design,
however, according to [64] there is a fundamental problem of
combining both levels.

The exemplary application of finite automata is the aggre-
gation of a swarm of robots, motivated by the behavior of
cockroaches [6]. In nature, the more cockroaches in a given
cockroach’s closest neighborhood, the greater the chance of
stopping it [68]. Simplifying the algorithm, the researchers in
the article [6] proposed several simple aggregation strategies;
two proposed automata implementing them are seen in Fig. 6.
The first strategy, based on finite automata (a robot wanders
in a random direction; if it approaches a neighboring robot for
a certain distance, it stops), leads to the formation of many
small clusters of robots. In contrast, the second one based on
probabilistic finite automata - the robot, after approaching its
neighbor, also stops, but still draws a random value of rand,
which if it is greater than the given threshold of P.,;; then
it enters the waiting state. Similarly, the robot moves from
the waiting state to the wandering state. The second strategy
leads to robots merging into larger groups, which is the desired
behavior for this task.

In the case of swarms, finite-state machines often lead to the
dominance of one of the states [64]. - primarily at the level of
collective decision-making. The problem deals with choosing
which state - micro or macro - is to dominate the behavior of
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Another method supported design method was proposed
by [72]. It used the concept of design patterns known from
software engineering. The method aims to develop a model for
the macro level and then the micro level for a specific class
of problems. Further, it describes the relationship between the
micro and macro levels. The designer then implements specific
behaviors on a given agent, following the rules defined by the
obtained model.

Fig. 6: Exemplary SI system design (robot aggregation) with A, somatic design

the use of: a) Finite-state machine (FSM), b) Probabilistic
finite-state machine (PFSM) [6].

the individual/collective. Therefore, the probability of exiting a
state is enables the negative feedback loop so that the system
can become self-organizing [64].

b) Virtual Physics: This is a wide range of IR system
design methods that is inspired directly from physics. It was
proposed by [3]; however, methods themselves have been used
since the 1980s and are quite popular. A common application is
to treat agents as particles that can interact with each other [69],
or to use virtual forces that affect agent behavior (e.g., an
artificial potential field [70]). It is hard to identify a specific
design process using these methods as they differ significantly
between each other, but given their popularity and effectiveness
in certain behaviors, they cannot be ignored.

c) Hierarchical Distributed Clusters: This is the design
method presented by [15] (Fig. 7), in which a complex behavior
(n-super cluster) is broken down into a set of simplified
behaviors (n — 1-super clusters). The simplified behaviors are
broken down again into another, even simpler behavior. This
process is repeated until the very basic behaviors of a single
robot are obtained. The method makes it possible to choose
different design methods for each cluster and at each level
of abstraction, thus simplifying the entire design process. For
instance, one cluster can use PFSM and another can utilize
virtual physics.

B. Supported Design

It is a set of methods that aim to predict the final behavior
of a swarm even at the design stage. An example of such a
design is the property-driven design method proposed by [71],
which involves prescriptive modeling and checking the resulting
model. In this case, the designer first creates a prescriptive
model of the swarm, which describes the target behavior
but does not implement the whole thing. What is more, its
properties are checked even before implementation. Thus, some
system features can be verified before the time-consuming
implementation. The method consists of four phases, and each
phase consists of layers (Fig. 8 - blocks represent the layers).
In the first phase, the expected properties of the swarm are
defined. In the next phase, a prescriptive model is created
based on them. Then, based on the model, a simulation of the
expected swarm is created. In the last phase, the behaviors
are implemented on robots. As highlighted [71] in each phase,
the layers defined in previous phases are updated to maintain
consistency.

Automated design methods aim to streamline the creation
of robot swarms by automatically generating robot controllers.
Unlike supported design methods, they do not aim to predict the
final result by supporting the designer, but to eliminate the need
for a swarm engineer. Automatic methods may use the trial-
and-error principle, but due to the lack of manual correction,
they can perform many trials in a relatively short time. In the
following paragraphs, the two most popular design methods
will be presented: optimization-based design and reinforcement
learning based desing.

a) Optimization-based design: As noted in [73], auto-
matic design is frequently the problem of selecting the optimal
controller from a pool of controllers in a given design space.
Such a controller should maximize the selected performance
metrics of the overall system. In such a system, automatic
design actually solves an optimization problem, hence the
name optimization-based design.

This approach often combines the use of neural networks
that form the controller of an individual robot and evolutionary
algorithms that select the parameters of these networks and their
topology [74]. Due to the usage of evolutionary algorithms,
these design methods are often also referred to as evolutionary
swarm robotics. As the researchers noted in the article [73],
most work on evolutionary swarms shares three important
characteristics:

1) All robots in the swarm have an exact copy of the same

controller (homogeneous swarm).

2) The objective function is defined globally, and it is

centrally evaluated.

3) For the sake of optimization, the evolutionary algorithm

is used.

This design approach is surprisingly similar to optimization
algorithms that use swarm intelligence. However, unlike
commonly used SI optimization algorithms, optimization-based
design has not yielded spectacular results at this point.

b) Reinforcement Learning based desing: Novelist
Stanistaw Lem proposed an alternative approach to evolutionary
swarms in his 1964 novel "The Invincible" [75]. The swarms
of robots depicted in the work had the ability to self-replicate
and improve the next generations. That phenomenon was called
necroevolution, the evolution of non-living matter. While the
exact use of necroevolution seems difficult to implement, such
an approach that would improve successive generations has
inspired researchers to design swarms using reinforcement
learning.

In reinforcement learning, the environment gives feedback
(reward) to the agent, while the agent’s task is to maximize
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Fig. 8: Property-driven design for robotic swarm proposed by [71].

the reward. In the case of swarm robotics, the agent is a single
robot with a particular skill set. The two most popular methods
for teaching such SI systems are joint action learners (JAL) and
multi-agent reinforcement learning (MARL) methods. Both
methods can be seen in Fig. 9. The JAL method is characterized
by perceiving the state of the environment as a whole and also
rewarding robots for acting in combination. In contrast, the
MARL method evaluates each robot separately. It can be clearly
seen that a micro-macro problem occurs here as well.

As the researchers point out in the article [76], the perfor-
mance of the systems designed using reinforcement learning
methods was initially unsatisfactory. The development of
reinforcement learning methods and combining them with
classical principles of collective behavior (such as collision
avoidance) began to yield better results. Numerous examples
of the use of reinforcement learning to design swarm systems
can be found in the aforementioned article [76].

c) Future developement of automatic design methods:
In the article [73], the authors suggested that nowadays there
is still too little empirical experience in designing swarms
to make the automatic methods successful. As in the case
of reinforcement learning, much better results will likely be
achieved when automatic methods are built on the achievements
of classical methods. For this to happen, it is necessary

to develop design methods further and combine them with
modeling methods to increase their versatility.

V. SWARM INTELLIGENCE SYSTEMS MODELING

SI system modeling is like a music note sheet for each
instrument section and each musician - an accurate and formal
(mathematical) description of a specific behavior for a single
agent or a particular group (or a whole swarm). In other words,
the SI system model complements the previously created design
that indicates expected behavior with a description that tells
how to do it.

A. Inherent elements of SI models

Despite the multiplicity of approaches to SI systems and their
applications, certain elements present in any swarm intelligence
system can be identified. This section will briefly discuss these.

1) Randomness: A common practice in modeling SI systems
is to use an element of randomness, or as [78] points out,
"craziness." Swarm intelligence systems tend to fall into local
minima [78] or stall at the target state (as in Fig. 6 a)). In order
to break the target state and allow the system to self-organize
again, adding a negative feedback [64] is necessary. The most
common way to do this is to add an element of "craziness"
that makes each agent have a chance to get out of the current
state, and thus the whole system, as indicated in Fig. 6 b).
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Fig. 9: Reinforcement learning methods used in swarm robotics.

2) Neighborhood: One of the basic terms used with all
SI systems is neighborhood, denoting the other agents in an
agent’s immediate vicinity, with whom the agent can mutually
interact. In fact, the neighborhood can be defined in terms of the
three SI layers (out of five defined in section III): observation,
communication, and decision. Most often, the neighborhood is
defined in one of them and taken as the definition for the whole
system. As indicated [79] in swarms of robots, the narrower
the neighborhood (in this case, communication), the more
efficient the system. On the other hand, [80] indicates that for
optimization tasks, wider neighborhoods in the PSO algorithm
(Alg. 2) perform better for simpler problems, while narrower
neighborhoods for more difficult problems. Consequently, the
neighborhood is one of the inherent components of all SI
models.

B. Optimization models

They derive from behavior-based design - one of the
first optimization techniques using SI (ACO) was inspired
by observing ant colonies [81]. Many other optimization
techniques using SI have been similarly developed; an overview
and description of many techniques can be found in [82]. The
two most important optimization algorithms using SI: ACO
and PSO will be briefly described.

a) ACO: - Ant Colony Optimization algorithm is a meta-
heuristic algorithm, inspired by ants searching for food [83].
While searching for food, the ants wander in a random direction.
If they find it, they release pheromones that depend on the
quantity and quality of the food. As the ant carries the food
to the anthill, it creates a trail of pheromones. Other ants can
smell the pheromones and are more likely to choose paths with
a strong scent.

ACO was originally developed for discrete optimization tasks,
but it has also found application in continuous optimization
[80]. The ACO algorithm proposed by [81] aimed to solve
static problems (i.e., discrete optimization, in which the
characteristics of the problem do not change during its solution).
The algorithm is shown in Alg. 1. The principle of its operation
is as follows: in the first step, ConstructAntsSolutions() each
ant moves in its neighborhood (problem space), making a
decision to move based on the level of pheromones and a
heuristic function. After each ant moves, they solves the

problem for a given value (their location). Once these are
solved, a pheromone update UpdatePheromones() is performed,
in which the information from the best (or all) solutions is
used to reinforce the corresponding paths, making them more
attractive to the other ants. In addition, optional “daemon”
actions can be performed (DaemonActions()) - such that
require global knowledge of the problem (e.g., local search
(ApplyLocalSearch()) or selective update of pheromones). The
whole process is repeated until the termination conditions are
met.

Algorithm 1 Ant Colony Optimization (ACO) [81]

while not terminated do
ConstructAntsSolutions()
UpdatePheromones()
DaemonActions() %optional
end while

b) PSO: - Particle Swarm Optimization was proposed
by [78] as an optimization method for continuous nonlinear
functions. Like ACO, it was inspired by nature - the algorithm
was originally designed to simulate a flock of birds with
collision avoidance. Over time, it began to resemble the
behavior of a particle swarm rather than a flock of birds. As a
consequence, the term “particles” was chosen as the authors
did not use mass or volume, but they did use velocity and
acceleration. Hence, the term particle swarm optimization.

A simplified description of the canonical PSO algorithm [1]
(its most popular version) was proposed by [80] and can be
seen at Alg. 2. By definition, the algorithm is a swarm and
therefore can execute on all particles simultaneously, while
iterativity is a simplification of the algorithm. The principle of
the algorithm is as follows: at runtime, particles move through
the searched space in search of an optimal (or sufficient)
solution. A particle communicates with other particles in
their neighborhood (the definition of neighborhood can vary
depending on the application; it can be very narrow or wide)
and passes information about their best position to each other.
Based on the information they have, each particle calculates a
new velocity. The velocity is affected by three factors: 1) the
previous velocity, 2) the direction to the best own position, and
3) the direction to the best position in the neighborhood. Each
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time randomized, the velocity estimate is influenced by a factor
R, which is a negative feedback to increase the searched space
and reduce the risk of falling into a local minimum. In addition,
the influence of the velocity factors can also be adjusted. After
calculating the velocity, each particle updates its position with
it and propagates to its neighbors. The procedure is repeated
until a satisfactory solution is found.

Algorithm 2 Particle Swarm Optimization (PSO) [80]

while not terminated do
for each particle ¢ do
if f(x;) < p(z;) then
Ppi < X3
end if
bg = min(pneighbors)
v =V + RO (pi — x;) + c2aRo © (pg — i) %
Update velocity
z; < x; + v; %Update position
end for
end while

For each particle i: z; - particle’s position, v; - particle’s
velocity, p; - particle’s best position, p, - The best position
in the local neighborhood of the particle, f() - Function for
which the minimum/maximum is being searched, R;, R -
Coefficients obtained from uniform distribution [0, 1], ¢1, ¢o
- Coefficients that define the influence of the given factors.
Additionally, ® is the Hadamard product - the particle’s position
can be defined in d dimensions.

C. Modeling of the robotic swarm

Currently, there is no universal method for modeling robot
swarms, but the set of tools proposed for creating models is
rather extensive. Most often, modeling a swarm is divided into
two levels—micro and macro. So far, there are few methods
that connect the micro level with the macro level directly. In
most cases, one models the two levels separately and then tries
to combine them. This chapter will briefly describe the most
popular methods for designing swarms at the micro-macro
levels, and a layer-based modeling method will be proposed.

1) Micro level: Micro-level models describe the internal
state of the robot and its interactions with the environment and
with other robots (layers: physical, observation, communica-
tion). Consequently, they strongly depend on the capabilities
of a particular robot and require a description that directly
targets a specific application. For this reason, the problem of
describing the state of a single robot, and therefore describing
the state of the entire system, arises.

a) Langevin equation: - is used to model an intermediate
state between micro and macro. It is a stochastic differential
equation used in physics to describe Brownian motion. In
robotics, the deterministic part is used to model the motion of
a single robot, while the stochastic part describes interactions
with other robots and the environment [3]. It is sometimes
combined with the Fokker-Planka equation, which describes
the macro level, to combine the micro and macro [84] levels.
That is one of the few examples of combining the two levels.

579

2) Macro level: Models describing the macro level focus
on expressing the state of the entire system (decision and
intelligence layers) without focusing on individual robots.
Because models created at the macro level are more universal,
there are significantly more solutions. This section will briefly
present the most popular methods.

a) Kinetic equations: - methods popular in the early
2000s. Kinetic equations were borrowed from chemistry, where
they are used to describe chemical reactions (more precisely,
to describe the dependence of the rate of a chemical reaction
on the concentration of reactants). In swarm robotics, they are
used to create a macroscopic description of changes in robot
states (a description of the time dependence of the number
of robots in a given state). This modeling method often “fills
in” the design of PFSMs. One of the first works using this
method was [85], in which a swarm of robots taking out poles
was described. A detailed description of the method can be
found in [64]. The main limitation of this method is the need
to determine the position of the robots over time.

b) Differential equations: - The most widely used is the
Fokker-Planck equation, borrowed from physics. In physics, it
describes the time evolution of the probability density function.
In swarm robotics, on the other hand, it describes the probability
density function of the states of all robots in the environment.
In principle, any collective behavior can be described using the
Fokker-Planck equation. This method has two major drawbacks
- it is difficult to solve analytically (numerical solutions are
computationally demanding), and secondly, some aspects, e.g.,
communication, are difficult to model [3].

3) Layer-based modeling: An alternative method of mod-
eling robot swarms can be to use layers 4. This method
allows certain aspects to be modeled separately, but again,
there is the problem of combining them to get a consistent
model. However, this method has the ability to focus on
layers, allowing one to develop proven solutions to certain
issues. For example, the problem occurring in the decision-
making layer is heavily researched (in [64] there is an entire
chapter devoted to collective decision-making. Furthermore,
other disciplines also research the topic). Things are similar
regarding the communication layer (for example, gradient
communication [54]). By creating universal models in each
layer, creating basic swarm functionality seems to be simplified.
Nonetheless, connecting all layers together using a common
model remains a pending problem.

D. Novel approaches towards swarm modeling

A team from the University of Palermo [86] presented a
rather unusual approach to modeling swarms using Quantum
Information Technologies. The goal of the robot swarm was
to find a target in a given space. The paper presented a
model of the entire system as an interaction matrix of pairs
of robots (Fig. 10). Each robot had a defined quantum state
that determined the robot’s position and the target’s position.
The superposition of the two expressed the reward. The system
modeled this way was then implemented using quantum gates
in the IBM Quantum Composer simulator. The simulation was
able to achieve the expected effect for a swarm of 10 robots.



580

R, Ry * Ry Ry *R,; R xR,
R, * R, R, Ry*R,; R)*R,
(1) —
S” =
R, *R, R, %R, .. R,_, R,
R, * R, R, * R,y R,* R, R,

Fig. 10: Robotic swarm state expressed as the pairwise
interaction matrix [806].

Currently, swarm modeling methods still have the funda-
mental problems of universality and combining different levels
or layers. This area is, therefore, very interesting for further
research.

VI. CONCLUSIONS AND FUTURE PROSPECTS

This article outlined the issues of Swarm Intelligence and
introduced the reader to the current achievements in its field. It
also presented the applications of IR systems. Then, it presented
the current methods of designing Swarm Intelligence systems
and outlined the most popular modeling methods.

An experienced musician can play a vista - without prior
preparation. The musician receives the notes just before playing
the piece, along with information on the key, tempo, and melody
line. In particular, the melody is important, as it connects each
instrument (micro level) to the effect produced by the whole
orchestra (macro level). Returning to the unusual concert of
Swarm Intelligence consisting of all agents playing a vista,
one can see that at this point Swarm Intelligence still needs to
define its "melody" to enable it to play much more complex
"pieces." In addition, the "melody" of the swarm would aim
to combine elements of projection with modeling, combining
micro and macro levels.

Although Swarm Intelligence is still at a relatively early stage
of development, this remarkable subset of artificial intelligence
has much to offer in many industries. The aim of the SI
work is to create the General Swarm Intelligence proposed
by [87] in the future. - to combine a logical swarm (e.g.,
a coherent infrastructure of distributed computing resources)
with a physical swarm (e.g., robots). Such a procedure aims
to increase the autonomy and capabilities of relatively simple
physical agents.

Given the numerous applications and opportunities of swarm
intelligence, its further development is undoubtedly worth
watching.
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