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Abstract—Music Structure Analysis (MSA) is crucial for 

understanding and leveraging the arrangement of musical 

compositions in various applications, such as music information 

retrieval, multimedia description, and recommendation systems. 

The following paper presents a novel approach to MSA that aims 

to predict labels for structural music segments (such as verse or 

chorus), thereby it would enhance any MSA-based applications. 

This is the supervised approach in contrast to clustering-based 

methods. For the task, selected pre-trained Convolutional Neural 

Networks (CNNs), such as VGG, ResNet or MobileNet were 

applied to classify the segments of musical structures (verse, 

chorus, etc.). Results demonstrated that ResNet50 and 

DenseNet121 achieved the highest performance in terms of 

classification accuracy, with ResNet50 reaching 87% and 

DenseNet121 reaching 85.16%. This highlights the potential of 

deep learning models for accurate and efficient music structure 

segment labeling, opening possibilities for advanced applications in 

both offline and real-time music analysis scenarios. 
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I. INTRODUCTION 

USIC Structure Analysis (MSA) is a fundamental task in 

Music Information Retrieval (MIR), essential for 

understanding the organization and narrative flow of musical 

compositions. It plays a pivotal role in various applications, 

such as summarization, and recommendation systems. The 

proper classification is specifically important in the latter, as it 

allows for proposing the list of new songs attractive for the 

particular listener. To do that, either collaborative filtering 

[1],[2], or the acoustic analysis [3] may be employed. The first 

approach requires access to the listening history of the users. Its 

outcome depends on the ability to extract lists of songs used by 

different users and find the common ground. This method is 

versatile, as it can be used for any type of commodities (books, 

movies, games, etc.) [4] and requires finding the user 

preferences from their history. Its disadvantage is that the 

reasons of playing (even repeatedly) particular song are not 

known and are not automatically linked with preferences. The 

already applied solutions include Spotify or Tidal 

recommendation modules [5]. 

On the other hand, detailed analysis of the listener’s taste 

requires deep insight into his/her psychological profile. The 

acoustic analysis is an attractive alternative, providing 

information about the songs’ structures and their melodical 

aspects. This case covers multiple applications, such as genre 

identification, instruments detection or sentiment analysis. The 

difficulty in applying this approach is the need to isolate the 

significant features of the songs, which describe the particular 
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(usually well defined) fragments. However, this way it is 

possible to bind the user’s preferences with the musical structure 

of the song. This makes the acoustics-based approaches 

potentially attractive for many applications. 

 The music structure analysis is based on the concept that a 

song is decomposed into non-overlapping (possibly redundant) 

segments that can be labeled. This is true for most of the 

contemporary musical genres, including pop, rock, disco, or 

metal. The fragmentation process is comprised of two parts: the 

first one involves finding boundaries of segments (for instance, 

based on tempo). The second one involves structural grouping 

(labeling) the segments into their corresponding categories [6]. 

This operation may incorporate symbols (like ‘A’, ‘B’, ‘C’), or 

functional labels such as ‘verse’, ‘chorus’, ‘intro’, etc. [7]. 

Focusing on the structural functional labeling, i.e. identifying 

song structures like verses, choruses, and bridges, allows for the 

more precise song analysis, for instance, clustering the similar 

songs as a whole, but based on the similarity between the 

corresponding parts. The manual decomposition is a time-

consuming process requiring the expertise of musicians to 

annotate songs. Development of automated systems speeds up 

the whole process, making it applicable for music creation and 

production, music recommendation, automatic music 

generation, audio visualization, and enhance the user experience 

in real-time scenarios (live concerts, video games, broadcasts) 

[8]. 

The following paper investigates the utilization of deep 

learning networks, specifically Convolutional Neural Networks 

(CNN), for labeling music structural segment functions. By 

evaluating a range of pre-trained CNN models, including 

VGG16, VGG19, ResNet50, ResNet50V2, ResNet101, 

DenseNet121, MobileNet, and MobileNetV2, it was possible to 

compare their efficiency during the musical segments’ 

identification. The performance measure includes classification 

accuracy calculated based on the ground truth. While many 

prior studies [9],[10] focus on segmentation or boundary 

detection, this paper considers explicit functional labeling, 

assigning roles such as "verse" or "chorus" to each segment in a 

supervised manner. It leverages transfer learning with pre-

trained CNNs, which enables the model to generalize and 

reduces the need for large, already annotated datasets. Multiple 

CNN architectures are explored to find optimal models 

regarding accuracy and efficiency measures (including 

precision, recall and F1-score). Obtained results show CNNs are 

applicable for understanding the organization and narrative flow 

of musical compositions. 

The content of the paper is as follows. In Section II the state-

of-the-art in the structural approaches to the musical content is 
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presented. Section III presents the architecture of the MSA 

module, exploiting the deep neural networks. In Section IV 

experimental results on the SALAMI (Structural Annotations 

for Large Amounts of Music Information) dataset are presented. 

The last section contains conclusions and future prospects.  

II. BACKGROUND AND RELATED WORK 

Music Structure Analysis has grown significantly due to the 

developments in signal processing, machine learning, 

specifically deep learning. Early approaches relied on audio 

signal processing techniques, self-similarity matrices, and 

clustering techniques to detect boundaries and segment musical 

structures [8],[11],[12]. 

Conventional methodologies for music segmentation mostly 

relied on audio signal processing techniques such as self-

similarity analysis, spectral graph theory, and time series 

similarity measures to analyze and segment audio. 

In [13] one of the earliest techniques for audio segmentation 

using audio novelty detection based on self-similarity analysis 

is introduced. It examines changes in audio features over time 

to identify boundaries in the music and speech. In [14] an 

approach to find recurrent patterns and analyze musical 

structure in acoustic music data was proposed. It uses the 

constant Q transform (CQT) to extract musical information and 

propose a new similarity measure. Significant repeating patterns 

were identified using an adaptive threshold on a self-similarity 

matrix, and then a heuristic-based approach further defines the 

segmented boundaries. A three-level hierarchy to analyze the 

structure of music was presented in [15] Pitch class profile 

characteristics are extracted at the note level. At the measure 

level, a similarity matrix is created. Dynamic time warping 

improves audio segment similarity calculations. In [16] a 

spectral graph theory was used to analyze repeated patterns in 

musical recordings, through Laplacian’s eigenvectors and 

identify structural segments. Spectral clustering partitions the 

repetition graph, while k-means clustering further refines the 

segment boundaries. In [17] an unsupervised method was 

utilized, combining the structure features that capture local and 

global properties with time series similarity measures to detect 

boundaries and annotate segments in music. The proposed 

method in [18] uses path-enhanced self-similarity matrices 

(SSMs), applies non-negative matrix factor 2-D deconvolution 

(NMF2D) to convert them into block-enhanced SSMs, and fuses 

multiple SSMs to improve boundary detection and segmentation 

accuracy. 

Other approaches leverage statistical learning and AI-driven 

algorithms for structural audio segmentation and boundary 

detection, such as Hidden Markov Models (HMMs), clustering, 

and probabilistic systems. 

In [19] proposed a method to segment musical signals by 

leveraging HMM where each state corresponds to a distinct 

audio texture representing steady statistical properties of the 

music (e.g., instrumentation, polyphonic timbre). The use of 

dynamic features from audio signal was proposed in [20]. This 

approach details a multi-pass system involving segmentation of 

the music signal, grouping potential states using K-means 

clustering for unsupervised segments grouping, and applying a 

hidden Markov model. In [21] a musical structure analysis 

system that employs a cost function to detect repeated parts of 

music was introduced. It generates candidate descriptions from 

acoustic input signals, and a method determines the best 

descriptions based on cost. A method segmenting musical audio 

into structural sections by labeling audio frames with HMM is 

shown in [22], the frames are then clustered into segment types 

based on state distributions. Temporal continuity is ensured 

through constraints modeled by a Hidden Markov Random 

Field. In [23] two methods to structure segmentation were 

combined: timbral novelty measure segmentation and harmonic 

analysis. The combination of these methods improves the 

simultaneous estimation of keys, chords, and structure 

boundaries. 

A new era has begun with the introduction of deep learning, 

specifically CNNs. They are known for their ability to 

automatically extract features from raw data and have been 

effectively used in a variety of music retrieval tasks [24]-[26]. 

In [24] CNNs trained directly on mel-scaled magnitude 

spectrograms were applied to automatically identify boundaries 

in audio signals. These networks were employed in [25] for the 

detection of musical boundaries. They were trained using Mel-

scaled log-magnitude spectrograms and similarity lag matrices 

(SSLMs). Automatic songs segmentation based on their musical 

structure using CNNs was presented in [26]. It employs a small-

scale architecture inspired by VGGNet, trained on Mel-scale 

spectrograms to predict segment boundary scores via 

regression. Post-processing (e.g., peak-picking) is then applied 

to identify discrete boundary times. 

While these studies aim to segment music and detect 

boundaries, they do not emphasize the functional labeling of 

segments (e.g., intro, verse, chorus). Further works specifically 

aim to detect the "chorus," which is important in applications 

like thumbnailing [27]-[32]. There has been limited work on 

functional labeling of all structural segments [33]-[36], which 

impacts the effectiveness of MSA for music recommendation, 

retrieval, and annotation systems by reducing their ability to 

identify and suggest relevant song parts based on function. 

In [27] a method for identifying repeated sections in music, 

particularly chorus, was proposed. It employs chroma-based 

representations to capture harmonic relationships, which are 

especially effective for the structure of popular music. In [28] a 

method called RefraiD introduced, which utilized chroma to 

identify chorus sections in popular music recordings by 

analyzing repeated patterns and handling modulations. In [32] 

DeepChorus, a comprehensive chorus detection model was 

introduced that minimizes engineering effort and prerequisite 

knowledge. It uses a multi-scale network to capture both global 

and local structural information and a self-attention convolution 

network to model correlations between segments, enabling end-

to-end learning from Mel-spectrograms without complex 

handcrafted features or post-processing. 

A model for segmentation and labeling of music structures 

combining Long Short-Term Memory (LSTM) networks and 

Hidden Semi-Markov Models (HSMM) was presented in [33]. 

This hybrid approach leverages the sequence modeling 

capability of LSTMs with the segmentation advantages of 

HSMMs, enabling both the segmentation and functional 

labeling of music structures. The approach explicitly addresses 

homogeneity, repetitiveness, and regularity in music sections, 

aligning with the described objectives. In [34] a multi-task deep 

learning framework introduced using a Transformer-based 

model (SpecTNT) to directly estimate semantic structural labels 

(e.g., "verseness," "chorusness") from audio via activation 
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curves. It employs a 7-class taxonomy, consolidates annotations 

across datasets, and integrates Connectionist Temporal 

Localization (CTL) loss, achieving precise structural analysis. 

In [35] the effectiveness of the Convolutive Block-Matching 

(CBM) algorithm in achieving unsupervised music 

segmentation was verified. In [36] an all-in-one model for 

hierarchical music structure analysis, integrating beat tracking, 

downbeat tracking, segmentation, and functional structure 

labeling into a unified framework. Their model leverages 

demixed audio (source-separated spectrograms) and employs a 

neighborhood attention mechanism, including 1D Dilated 

Neighborhood Attention (DiNA) and 2D Neighborhood 

Attention (NA) to handle long-term and local dependencies in 

the music data.  

Though MSA has made significant progress recently, it often 

lacks the ability to assign functional roles to structural segments 

like "verse" and "chorus." Traditional approaches primarily 

focus on boundary detection or segment clustering but often 

lack the ability to assign meaningful labels. Deep learning 

techniques, while promising in segmentation tasks, often focus 

on identifying transitions or boundaries rather than the human-

readable musical passages. This gap hinders the full potential of 

MSA in advanced applications, such as music recommendation 

as it enables deeper understanding of songs. 

The proposed method addresses these challenges by using 

CNNs trained in a supervised manner to identify already 

assigned labels for musical segments. Transfer learning was 

used for the task to reduce the dependency on extensive 

annotated datasets. The pre-trained network additionally trained 

with the application-specific data usually provides reasonable 

performance with much shorter training convergence time. 

III. METHODOLOGY 

A. Dataset Preparation 

The proposed method employs CNNs to classify musical 

segments. The network requires a labelled image dataset for 

training, where each label represents the structural function of 

the corresponding music segment. In the presented research, the 

SALAMI (Structural Annotations for Large Amounts of Music 

Information) dataset was utilized. It is a well-known dataset in 

MIR. It includes structural annotations of full-length tracks from 

a variety of genres, such as: popular music, jazz, classical music 

and world music [37]. Overall, 468 full-length audio recordings 

were obtained from Internet and downloaded following [38].  

However, 29 of them were excluded due to incomplete 

annotations. Each file was then split into labelled segments 

using annotations included in the set metadata. The annotation 

specifies segments such as "silence," "intro," "verse," "chorus," 

and so on, with precise time intervals (e.g., 0.0 - silence, 28.746 

- intro, etc.). Afterwards, audio data are converted into image 

representations known as mel-spectrograms, that represent the 

frequency distribution of the signal as it changes over time [39]. 

Mel-spectrograms are utilized in music genre classification, 

voice recognition, and sound event detection. Here, they 

represent the input data for the deep learning models. 

To simplify the analysis and improve clarity, the several 

labelled classes that were initially present in the dataset were 

combined into a smaller collection of seven categories, as 

described in [34]. They are “verse”, “silence”, “outro”, “intro”, 

“inst” (i.e., “instrumental”), “chorus”, and “bridge”. Figure 1 

illustrates the procedure for data processing and preparation. 

The obtained images may then be used to train the CNN. 

Fig. 1. Dataset preparation 

B. Applying Convolutional Neural Networks for Supervised 

Classification 

The CNNs in the transfer learning mode were employed for 

supervised classification. This addressed the limitation of the 

requirement for large amount of training data [40]. The 

exploited set consisted of 6,408 files categorized into seven 

distinct types. The distribution of images in each class is as 

follows: 'chorus' has 1234 images, 'bridge' has 280 images, 'inst' 

has 1685 images, 'verse' has 1342 images, 'outro' has 490 

images, 'silence' has 941 images, and 'intro' has 436 images. 

Following preparation, the set was partitioned into training and 

testing subsets using an 80%-20% split, resulting in 161 training 

batches and 40 test batches each with 32 samples each. This 

distribution indicates a class imbalance, which is common in 

many real-world datasets. To address this class weighting and 

data augmentation techniques were experimented. However, 

these approaches did not significantly impact the results, so they 

were neglected. 

In the experiment, eight transfer learning architectures were 

utilized, including VGG16, VGG19, ResNet50, ResNet50V2, 

ResNet101, DenseNet121, MobileNet, and MobileNetV2. 

These architectures differ in their design. For instance, VGG 

models use simple sequential architectures with small filter 

sizes, ResNet models incorporate residual connections, 

DenseNet employs densely connected layers and MobileNet are 

lightweight models. By incorporating these commonly used pre-

trained CNN architectures, the goal was to determine which 

model performed best for the task of classifying music structural 

functions. While this was not intended as a formal comparative 

study, provided insights into the effectiveness of various CNN 

models on the given dataset.  

Figure 2 illustrates the proposed model, employing the 

specific variant of CNN. It was trained using image inputs that 

were resized to 224 x 224 pixels. A preprocessing layer 

preceding the applied CNN model was added to ensure that 

images were scaled appropriately according to the requirements 

of the chosen transfer learning architecture. Each base model 

was initialized with pre-trained weights from ImageNet (which 

represents a large-scale image dataset) [41] excluding the top 
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classification layers. To leverage the pre-trained features, the 

initial layers of the base model were frozen. Specifically, all 

layers before layer 100 were set to be non-trainable (frozen). 

However, for models with fewer than 100 layers (e.g., VGG16), 

only the available layers were frozen. Additional layers were 

inserted to enhance performance and prevent overfitting. They 

consist of GlobalAveragePooling2D, Dropout with rates of 0.4 

and 0.2, Dense layer with 128 units and ReLU activation 

function, and Output Dense layer with seven outputs (equal to 

the number of identified fragments) and Softmax activation 

function. Each model was compiled with an Adam optimizer of 

0.0001 learning rate and trained for 100 epochs (though training 

of some networks, i.e. VGG16 and VGG19, terminated earlier 

based on early stopping criteria) with the hold-out validation 

(i.e. one-time division of the available data into the training and 

testing set). Finally, the proposed models were evaluated using 

the test dataset to determine their effectiveness. 

 

 

Fig. 2. The proposed model 

IV. EXPERIMENTAL RESULTS 

Experiments were conducted on a computer equipped with an 

Intel Core i7 processor, 32 GB of RAM, and a 1 TB hard disk 

drive (HDD). In terms of software, the Spyder integrated 

development environment (IDE) for Python language was used. 

To check the ability of the traditional computer system for the 

transfer learning no GPU was used for the task, all off-line and 

on-line computations have been performed on the CPU.  

Table I shows the averaged computational time for each 

model per epoch. Notably, the MobileNet, MobileNetV2, and 

ResNet101 models exhibited the lowest average computational 

time, not exceeding 105 seconds. This is because their networks 

are relatively simpler, therefore modifying their weights is 

faster. In contrast, the VGG19 and VGG16 models had the 

longest computation times, with values of 821 seconds and 677 

seconds, respectively. All other networks have training 

durations significantly longer (between three to five times) than 

MobileNet, which may limit their applications when the 

learning phase must be performed from scratch, without any 

prior knowledge transfer.  

Regarding the accuracy, ResNet50 is the best (despite its long 

training time), but should be preferred when the efficiency is the 

 

top priority. with DenseNet121 scoring the second place, 

highlighting the effectiveness of deeper architectures with 

advanced connectivity patterns. Conversely, VGG19 and 

VGG16 produced the lowest testing accuracies, likely due to 

their simpler sequential architecture which lacks advanced 

connectivity mechanisms, which can limit their performance on 

complex tasks. Other models slightly lag behind the best 

performing one. These results suggest that while deeper models 

generally perform better, lightweight architectures like 

MobileNetV2 can still achieve competitive results.  
 

TABLE I 

MODELS’ PERFORMANCE METRICS AND TRAINING TIME 

Model Testing accuracy Training time 
(per epoch) [s] 

MobileNet 0.7875  102 

MobileNetV2 0.7922  103 

DenseNet121 0.8516 450 

ResNet101 0.7945 104 

VGG19 0.4930 821 

ResNet50 0.87 503 

VGG16 0.4914 677 

ResNet50V2 0.8375 389 

 

In addition to testing accuracy, the precision (Table II), recall 

(Table III), F1-score (Table IV), and a confusion matrix [42] of 

the models were used to evaluate their performance. 

Identification of the particular parts of songs differs, as usually 

“silence” and “intro” are easiest to detect. All other elements are 

identified with varying performance, depending on the applied 

architecture.  

Figure 3 containing confusion matrices confirms the superior 

performance of ResNet50 and DenseNet121 for each song 

fragment.  
TABLE II 

PRECISION OF THE MODELS ACROSS THE SEVEN CATEGORIES 

Model Bridge Chorus  Inst Intro Outro Silence Verse 

MobileNet 0.51 0.78 0.79 0.71 0.72 0.82 0.90 

MobileNetV2 0.88 0.68 0.88 0.57 0.76 0.81 0.90 

DenseNet121 0.88 0.85 0.84 0.85 0.79 0.89 0.87 

ResNet101 0.67 0.75 0.78 0.80 0.78 0.87 0.82 

VGG19 0 0.39 0.47 0.62 0.50 0.83 0.46 

ResNet50 0.94 0.84 0.86 0.81 0.82 0.88 0.92 

VGG16 0 0.40 0.41 0.25 0.49 0.84 0.49 

ResNet50V2 0.77 0.76 0.90 0.79 0.77 0.87 0.89 

 

The obtained results prove the efficiency of the more 

complex architectures, though their training is related with the 

longer training times. When computational resources are not 

limited, they are the most preferable architectures. When time 

matters, simple networks (MobileNet and ResNet). The 

additional problem to solve is the detection of the change in the 

song fragment, that should precede the identification operation, 

presented in this research. This can be done through the tempo 

analysis of the original song.  
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TABLE III 

RECALL OF THE MODELS ACROSS THE SEVEN CATEGORIES 

Model Bridge Chorus  Inst Intro Outro Silence Verse 

MobileNet 0.65 0.76 0.80 0.70 0.78 0.97 0.72 

MobileNetV2 0.55  0.86 0.75 0.71 0.75 0.95 0.79 

DenseNet121 0.65 0.81 0.87 0.82 0.77 0.95 0.87 

ResNet101 0.62 0.81 0.75 0.55 0.82 0.90 0.85 

VGG19 0 0.35 0.66 0.05 0.37 0.81 0.53 

ResNet50 0.75 0.87 0.88 0.72 0.90 0.94 0.87 

VGG16 0 0.17 0.74 0.02 0.46 0.83 0.58 

ResNet50V2 0.61 0.88 0.86 0.73 0.86 0.93 0.80 

 

 
Fig.3. Confusion matrix (a) DenseNet121 (b) MobileNet (c) MobileNetV2 

(d) ResNet50 (e) ResNet50V2 (f) ResNet101 (g) VGG16 (h) VGG19 

 

CONCLUSION 

The presented research demonstrated the effectiveness of deep 

learning models (i.e. CNN) in classifying music structural 

segments. The effectiveness of models such as ResNet50 and 

DenseNet121 highlights their potential to improve music 

analysis tasks. Exploration of transfer learning techniques (even 

using CPU only) proved the adaptability of pre-trained models, 

offering promising avenues for future research and applications 

in the music recommendation systems.  

Future research will cover the combination of the proposed 

models with the procedure of detecting the song fragments prior 

to their identification. The second step is the usage of the 

fragment detection to calculate similarities between songs seen 

not as a whole, but as sets of segments which could be 

compared. This will lead to create the complete music 

recommendation system. 
 

TABLE IV 

F1-SCORE OF THE MODELS ACROSS THE SEVEN CATEGORIES 

Model Bridge Chorus  Inst Intro Outro Silence Verse 

MobileNet 0.57 0.77 0.80 0.71 0.75 0.89 0.80 

MobileNetV2 0.67  0.76 0.81 0.63 0.75 0.87 0.84 

DenseNet121 0.75 0.83 0.85 0.83 0.78 0.92 0.87 

ResNet101 0.65 0.78 0.77 0.65 0.80 0.89 0.83 

VGG19 0 0.37 0.55 0.10 0.43 0.82 0.49 

ResNet50 0.84 0.85 0.87 0.76 0.86 0.91 0.89 

VGG16 0 0.24 0.53 0.04 0.47 0.84 0.53 

ResNet50V2 0.68 0.81 0.88 0.76 0.81 0.90 0.84 
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