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Abstract—In general, the speech signal can be described by the 

excitation signal, the impulse response of the vocal tract, and a 

system that describes the impact of speech emission through 

human lips. The characteristics of the vocal tract primarily shape 

the semantic content of speech. Regrettably, the irregular 

periodicity of glottal excitation represents a significant factor in 

generating substantial distortions (ripples) in the amplitude 

spectrum of voiced speech. In this study, a PS-STFT (Pitch-

Synchronized Short-Time Fourier Transform) method was 

proposed to achieve a reliable amplitude spectrum of the vocal 

tract. Subsequently, a set of cepstral coefficient vectors, namely PS-

HFCC (Pitch Synchronized Human Factor Cepstral Coefficients), 

as a chosen representative of the commonly used classical cepstral 

parameterization methods was analyzed to investigate the 

statistical properties after correction. Additionally, the widely 

accepted in speech recognition applications, the GMM (Gaussian 

Mixture Model) was chosen as the statistical acoustic model of 

individual Polish speech phonemes. To evaluate the quality of the 

proposed method, the distances between the multivariate 

probability distributions of the GMM form were calculated. 

Modifying classical cepstral methods through the analysis of 

variable-length signal frames synchronized to the fundamental 

period resulted in a reduction in the variance of the estimators of 

the cepstral coefficients, leading to an increase in the distances 

between the probability distributions and, consequently, improved 

classification results. 

 

Keywords—robust cepstral parameterization; fundamental 

period; amplitude spectrum correction; pitch synchronized STFT 

I. INTRODUCTION 

N Speech Processing Systems (SPS), there is a need to 

compensate for the impact of numerous factors that can 

negatively affect system performance. These factors include 

recording conditions, intra- and interpersonal variability, con- 

textuality, etc.  

In general, the speech signal can be described by the 

excitation signal, the impulse response of the vocal tract, and a 

system that describes the impact of speech emission through 

human lips. The characteristics of the vocal tract primarily 

shape the semantic content of speech. Regrettably, the irregular 

periodicity of glottal excitation represents a significant factor in 

the generation of substantial distortions (ripples) in the 

amplitude spectrum of voiced speech. 

The paper proposes a new solution, in the general form of 

Pitch Synchronized Cepstral Parametrization, to significant 

reduction of this undesirable excitation influence. The first step 

is to estimate the fundamental period T0 of the input speech 
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signal and then determine the amplitude spectrum using STFT 

(Short-Time Fourier Transform) with a time-varying window of 

length consistent with the current value of T0. 

A review of the literature reveals at least a dozen different 

parameterization methods, the most commonly used and 

effective solutions in practical applications being those that 

employ time-frequency transformations and cepstral 

representations. This group of solutions includes the MFCC 

(Mel Frequency Cepstral Coefficients) [1], HFCC (Human 

Factor Cepstral Coefficients) [2], BFCC (Basiliar-membrane 

Frequency-band Cepstral Coefficient) [3], GTCC (Gammatone 

Cepstral Coefficient) [4] and AMS (Amplitude Modulation 

Spectrum) [5] algorithms. On the other side there exists another 

group of solutions using linear prediction methods and 

examples of their implementations are LPCC (Linear Prediction 

Cepstral Coefficients) [6] and PLP (Perceptual Linear 

Prediction) [7] with improvement in the form of the RASTA 

(Relative Spectra) algorithm [8] or bank of band-pass filters  

(multi-resolution RASTA filtering) [9]. 

 In [10] it was shown that the HFCC parametrization is 

characterized by greater robustness to noise than the MFCC and 

studies have shown differences in recognition performance of 

up to 30% [27]. As a result, the HFCC parameterization, was 

selected as the representative of cepstral parametrization 

methods for the experimental study on ripple reduction in the 

amplitude spectrum. The purpose of such an analysis was to 

check the statistical properties of the classical HFCC and 

proposed PS-HFCC cepstral coefficient vectors for individual 

vowels based on the variances of their components. 

Additionally, the widely accepted in speech recognition 

applications, the GMM (Gaussian Mixture Model) was chosen 

as the statistical acoustic model of individual Polish speech 

phonemes. To evaluate the quality of the proposed method, the 

distances between the multivariate probability distributions of 

the GMM form and Frame Error Rate (FER) were calculated. 

II. THEORY 

A. Model of speech signal emission 

Commonly accepted in literature and verified experimentally 

the mathematical model of Fant's source-filter type for a 

discrete-time speech signal s(n) can be expressed as below [11]:  

            𝑠(𝑛) = 𝑣(𝑛) ⋆ 𝑙(𝑛) ⋆ 𝑢(𝑛) = ℎ(𝑛) ⋆ 𝑢(𝑛) (1) 
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where 𝑢(𝑛) is the excitation, 𝑣(𝑛) is the impulse response of the 

vocal tract filter, 𝑙(𝑛) describes the form of speaker speech 

emission and ⋆ is the discrete convolution operator. The objects 

of our further considerations are the voiced parts of speech with 

excitation model 𝑢(𝑛) given in the impulse formula [6]: 

𝑢(𝑛) = 𝑔(𝑛) ∗ 𝑝(𝑛) = ∑ 𝑔(𝑛𝑇𝑠 − 𝑘𝑇0)

+∞

𝑘=0

, (2) 

where 𝑔(𝑛) is a single excitation pulse, 𝑝(𝑛) = ∑ δ(𝑛𝑇𝑠 −+∞
𝑘=0

𝑘𝑇0) is a pulse train with a repetition time 𝑇0  (pitch) while 𝑇𝑠 is 

the sampling interval. In the case of mixed forms of excitation 

(e.g. plosives) deterministic part of excitation given in the same 

form (3) can be extracted. In consequence, a voiced part of 

speech signal 𝑠(𝑛) can be written as: 

𝑠(𝑛) = ∑ 𝑠𝑝(𝑛𝑇𝑠 − 𝑘𝑇0)

+∞

𝑘=0

, (3) 

where 𝑠𝑝(𝑛) is the response of the modeling system to a single 

input excitation pulse δ(n).  
In practical situations, we consider a finite in time 

representation of the signal, i.e. 𝑠𝑤(𝑛), as the result of the 

windowing techniques application with the function 𝑤(𝑛) on 

the signal 𝑠(𝑛): 

𝑠𝑤(𝑛) = 𝑠(𝑛)𝑤(𝑛), (4) 

changing the spectrum S(𝜔) of the signal 𝑠(𝑛) to the form [11]: 

𝑆𝑤(𝜔) = 𝐷𝑇𝐹𝑇{𝑠(𝑛)} ⋆ 𝐷𝑇𝐹𝑇{𝑤(𝑛)} = 𝑆(𝜔) ⋆ 𝑊(𝜔) (5) (5) 

where DTFT{⋅} is the Discrete Time Fourier Transform 

operator. The influence of spectral leakage introduced with 

𝑊(𝜔) element can be compensated by windowing operation 

with a properly chosen window function (e.g. Hamming, 

Kaiser). 

B. New concept of  speech signal spectrum analysis with 

specific length of the time window 

In general, when analyzing voiced phonemes, a fixed frame 

length 𝑇𝑤 (typically around 30 ms) is assumed, with overlapping 

between frames (e.g., 30%), while also accounting for possible 

variations (up to several percent) in the repetition period 𝑇0  

between neighboring elementary signals 𝑠𝑝(𝑛𝑇𝑠). Under such 

conditions, situations often arise where there is a non-integer 

number of repetitions of the signals 𝑠𝑝(𝑛𝑇𝑠) within the analysis 

frame, which makes spectral analysis and the derivation of the 

correction term formula a highly complex task. For this reason, 

in further considerations, we simplify the problem and assume 

that the time length of the analysis window 𝑇𝑤 fulfills the 

condition Tw = NT0, where 𝑁, under the assumption of the local 

stationarity of 𝑇0 in the analyzed frame, is an integral multiple 

of the current fundamental period. Even in this highly simplified 

situation, we obtain the following relation: 

𝑠𝑤(𝑛) = 𝑤(𝑛) ∑ 𝑠𝑝(𝑛𝑇𝑠 − 𝑘𝑇0)

𝑁−1

𝑘=0

, (6) 

with the following spectral representation: 

𝑆𝑤(ω) = {𝑆𝑝(ω) ∑ 𝑒−𝑗ω𝑘𝑇0

𝑁−1

𝑘=0

} ∗ 𝑊(ω) = (7) 

= {𝑆𝑝(ω)
(𝑠𝑖𝑛(ω𝑇0 ∙ 𝑁/2))

(𝑠𝑖𝑛(ω𝑇0/2))
𝑒−𝑗ω(𝑁−1)/2𝑇0} ∗ 𝑊(ω), 

which illustrates the source of significant ripples in the 

amplitude spectrum of the analyzed frame signal 𝑠𝑤(𝑛) what 

can be observed in Fig 1. Fortunately, for N = 1 the influence of 

the time-varying 𝑇0 on the observed spectrum 𝑆𝑤(𝜔) 

completely disappears, but simultaneously implies the necessity 

of the current value 𝑇0 estimation and suggests the variable-

length frames processing.  

 

 

Fig.1. Amplitude spectra 𝑆𝑤(𝑓) of constant length N consecutive frames 

𝑠𝑤(𝑛) of exemplary longer utterance of phoneme "a" with the fundamental 

frequency 𝑓0 about 130Hz. The individual amplitude spectra lines of 

successive frames of the phoneme 'a' have been distinguished using different 

colors. 

The illustration in Fig. 1 shows the amplitude spectra of 

consecutive frames of Polish phoneme ”a” selected from longer 

utterances by the same speaker, recorded under identical 

conditions with fundamental frequencies about 𝑓0 = 130 Hz. 

Due to the existence of ripples of significant levels as local 

maxima, which are in fact harmonics of the frequency 𝑓0, the 

formants are not easily recognized. 

C. Fundamental period 𝑇0 estimation 

From equation (7) it follows that the linear spectrum 

compensation procedure requires knowledge of the current 𝑇0 

value i.e. the use of a simple and efficient method for its 

estimation. The different solutions for determining pitch 

provide other effectiveness in noise robustness, accuracy, and 

computation time. In general solutions to the problem of 

calculating the current value of 𝑇0 use the samples from the 

analysis frame (e.g. autocorrelation methods [12], [13]) or 

periodicity in their spectrum (e.g. summation of harmonics 

algorithms [14], [15]). One of the most popular and efficient 

methods of pitch estimation is the YIN algorithm [16], together 

with its statistically improved version [17]. In the numerical 

experiments of this paper, the YIN solution based on cumulative 

mean normalized difference function (CMNDF) was chosen and 

implemented. In general, the computational complexity of the 

YIN algorithm is 𝑂(𝑊 ∙ 𝐾) where W denotes the length of the 

analysis window and K represents the maximum lag, expressed 
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in samples, corresponding to the lowest possible fundamental 

frequency. 

D. Cepstral methods of speech parametrization 

Among parameterization solutions widely applied in the 

literature, the approaches utilizing time-frequency transforms 

and cepstral representations are recognized as some of the most 

extensively employed and efficient methods [18]. Generalized 

form of data flow chart describing cepstral parameterization 

methods is shown in Fig.2 and is consistent with Mel Frequency 

Cepstral Coefficients (MFCC), Human Factor Cepstral 

Coefficients (HFCC), Basiliar-membrane Frequency-band 

Cepstral Coefficient (BFCC), Gammatone Cepstral Co- 

efficient (GTCC) and Amplitude Modulation Spectrum (AMS) 

methods. In this paper, the HFCC representation of the input 

 

Fig.2. Generalized form of cepstral parameterization methods 

frames was taken into consideration. This method is robust to 

noisy or adverse acoustic conditions and was successfully 

implemented and verified in speech and speaker recognition, 

speech synthesis, and acoustic scene analysis [10]. The 

parameterization results in the cepstral coefficient vectors c(t, 

m) [1] 

𝑐(𝑡,𝑚) = ∑𝑌𝑙(𝑡, 𝑗)𝑐𝑜𝑠

𝐽

𝑗=1

(𝑚 (𝑗 −
1

2
)
𝜋

𝐽
) ;𝑚 = 1,… ,𝑀 (8) 

where 𝑌𝑙(𝑡, 𝑗) is the amplitude spectrum 𝑆(𝑡, 𝑓) expressed 

in mel scale using a bank of filters whose bandwidths have 

been calculated in the ERB scale, 𝑡 is the input frame 

number, 𝑗 is frequency band number, 𝐽 is the total number of 

frequency bands, and 𝑀 is the number of HFCC coefficients. 

In this method, the bank of uniformly distributed in ERB- 

scale triangular filters and the logarithm function implements 

the perception of the human auditory system. A complete 

description of the HFCC approach to speech features 

extraction can be found in [10]. The quasiperiodicity of the 

glottal excitation and significant fluctuations in the amplitude 

spectrum produce additional variability in the resulting HFCC 

coefficients (see Fig.3). The influence of fundamental 

frequency f0 on HFCC coefficients was considered in details in 

[19] [20]. 

E. New method of speech parameterization - Pitch 

synchronized STFT (PS-STFT) 

Relation (7) describing the DTFT spectrum of the analyzed 

frame 

𝑆𝑤(𝜔) = {𝑆𝑝(𝜔)
(𝑠𝑖 𝑛(𝜔𝑇0𝑁/2))

(𝑠𝑖 𝑛(𝜔𝑇0/2))
⋅ 𝑒−𝑗𝜔(𝑁−1)/2𝑇0} ⋆ 𝑊(𝜔), 

directly imposes the rules for compensating its distortions 

introduced with fundamental frequency 𝑓0 and their 

harmonic frequencies. In fact, the choice N = 1 is equivalent 

to signal analysis with frame of length 𝑇0. In this case, the 

deformation component of desired spectrum 𝑆𝑝(ω) 

completely disappears 

𝑆𝑤(𝜔) = 𝑆𝑝(𝜔) ⋆ 𝑊(𝜔) 

but introduces the requirement to estimate the current value 

of 𝑇0. 

 

 

Fig.3. Cepstra of consecutive frames of phoneme “a” with the fundamental 

frequency about 130Hz. 

In the second step the influence of the rectangular window 

with length 𝑇0) on the observed spectrum 𝑆𝑤(𝜔) is 

compensated by using classical solutions of windowing 

techniques (e.g. Hamming or Kaiser window). Finally, zero 

padding techniques to obtain a constant length of 1024 

sample frame are applied to obtain the same uniform 

sampling effect of the DTFT transform in the calculated 

DFT spectrum. This approach also enables the application of 

classical techniques for averaging the spectra of adjacent 

frames to compensate for the presence of additive noise (e.g., 

the Bartlett method). The generic scheme of the proposed 

PS-STFT method is depicted in Fig. 4. 

 

 

 

Fig.4. Generalized form of cepstral parameterization methods with the 

proposed pitch synchronized STFT (PS-STFT) 
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F. Gaussian Mixture Model of Polish speech vowels 

In order to evaluate the performance of the proposed approach, 

a study was carried out on Polish speech vowels occurring in 

section III with their HFCC cepstral parameterization. In effect 

introduced above cepstral representation required the 

calculations of vowel acoustic models based on Gaussian 

Mixture Model (GMM) probability distributions with diagonal 

covariance matrices form [26] 

𝑝𝑓(𝒐) = ∑ 𝑤𝑓𝑖

𝐾

𝑖=1

𝑁(𝒐,𝒎𝑓,𝑖 , 𝚺𝑓,𝑖), (9) 

where 

𝑁(𝒐,𝒎𝑓,𝑖 , 𝚺𝑓,𝑖) = ∏
1

√2𝜋𝜎𝑓,𝑖,𝑛

𝑒
−

1

2𝜎𝑓,𝑖,𝑛
2 [𝑜𝑛−𝑚𝑓,𝑖,𝑛]

2𝑁

𝑛=1

 

 

𝚺𝒇,𝒊 =

[
 
 
 
 
σ𝑓𝑖1

2 0 ⋯ 0

0 σ𝑓𝑖2
2 … 0

⋮ ⋮ ⋱ ⋮
0 0 … σ𝑓𝑖𝑀

2
]
 
 
 
 

 

and 𝑤𝑓,𝑖, 𝒎𝑓,𝑖 denotes the mixture 𝑖𝑡ℎ component weights 

and means for 𝑓𝑡ℎ phoneme. GMM acoustic model is usually 

determined with the EM algorithm ([21]). 

G. Effectiveness measures of pitch synchronized 

spectrum correction 

1) Distance between GMM distributions 

In general, a measure to calculate the distance between the 

probability density distributions 𝑝ℎ(𝐨) and 𝑝𝑔(𝐨) for a N-

dimensional vector of random variables 𝐨 is the Kullback-

Leibler divergence [22] 

𝐾𝐿(𝑝ℎ ∥ 𝑝𝑞) = ∫ 𝑝ℎ(𝒐)log (
𝑝ℎ(𝒐)

𝑝𝑔(𝒐)
) 𝑑𝒐

𝒪

 (10) 

Unfortunately, for the case of distributions represented by a 

mixture of Gaussian GMM distributions of the form [26]: 

𝑝ℎ(𝒐) = ∑𝑤ℎ,𝑖𝑁(𝒐,𝒎ℎ,𝑖 , 𝚺ℎ,𝑖)

𝐾

𝑖=1

= ∑𝑤ℎ,𝑖𝑝ℎ,𝑖(𝒐)

𝐾

𝑖=1

; 

𝑝𝑔(𝒐) = ∑𝑤𝑔,𝑖𝑁(𝒐,𝒎𝑔,𝑖, 𝚺𝑔,𝑖)

𝐾

𝑖=1

= ∑𝑤𝑔,𝑖𝑝𝑔,𝑖(𝒐)

𝐾

𝑖=1

, 

where 𝒎ℎ,𝑖 and 𝒎𝑔,𝑖are the mean value vectors and 𝚺ℎ,𝑖 and 

𝚺𝑔,𝑖the autocovariance matrices of the components of the 

Gaussian distributions in the mixtures, there is no analytical 

formula for determining such values. Consequently, we can use 

approximation methods of stochastic nature in this case, i.e. 

Monte Carlo simulation methods using the formula [22] 

𝐾𝐿(𝑝ℎ ∥ 𝑝𝑞) =
1

𝐷
∑log

𝑝ℎ(𝒐𝑖)

𝑝𝑔(𝒐𝑖)
,

𝐷

𝑖=1

  (11) 

which generally require a huge amount of D data in the form of 

multidimensional observations oi or their generation based on 

the known form of the GMM distribution for 𝑝ℎ(𝐨). However, 

in the lack of such data, we can use a deterministic 

approximation of the expression (11) using the UT (Unscented  

 

Transform) concept [23]. Under the assumption that the 

distributions 𝑝ℎ(𝐨) and 𝑝𝑔(𝐨) are of the form GMM (9) with 

K components with diagonal covariance matrices, i.e. 

 𝚺ℎ,𝑖  = 𝑑𝑖𝑎𝑔{σℎ,𝑖,𝑘
2 } and 𝚺𝑔,𝑖  =  𝑑𝑖𝑎𝑔{𝜎𝑔,𝑖,𝑘

2 } for 𝑘 =

 1, 2, … , 𝑁, we can write that [24] 

𝐾𝐿(𝑝ℎ ∥ 𝑝𝑞) = ∫ 𝑝ℎ(𝒐) log (
𝑝ℎ(𝒐)

𝑝𝑔(𝒐)
)

𝑂

𝑑𝒐 = (12) 

= ∑ 𝑤ℎ,𝑖𝑝ℎ,𝑖𝐸[log 𝑝ℎ (𝒐)]

𝐾

𝑖=1

− ∑ 𝑤ℎ,𝑖𝑝ℎ,𝑖𝐸[log 𝑝𝑔 (𝒐)]

𝐾

𝑖=1

 

 

To simplify the description of the approximation procedure of 

the expression (12), we analyze only the second component 

of the above sum, since the first one, assuming that 𝑝𝑔(𝐨) =

𝑝ℎ(𝐨) is its special case. According to the UT method, for 

each of the K component distributions of the GMM mixture 

𝑝ℎ,𝑖(𝐨)  =  𝑁(𝒐,𝒎ℎ,𝑖, 𝚺ℎ,𝑖) with diagonal matrices 𝚺ℎ,𝑖  =

𝑑𝑖𝑎𝑔{𝜎ℎ,𝑖,𝑘
2 } we propose a set of 2𝑁 “sigma” points of the form 

𝒐𝑖,𝑘 = 𝒎ℎ,𝑖 + √𝑁σℎ,𝑖,𝑘
2 𝒆𝑘; 

𝒐𝑖,𝑘+𝑁 = 𝒎ℎ,𝑖 + √𝑁𝜎ℎ,𝑖,𝑘
2 𝒆𝑘, 

Where 𝒆𝑘 for k = 1, 2, … , N are basis vectors in the 𝑁 
dimensional Cartesian coordinate system and we determine 

the approximation of the integral 𝑝ℎ,𝑖𝐸[log 𝑝𝑔 (𝒐)] based on 

the formula [24] 

𝑝ℎ,𝑖𝐸[log 𝑝𝑔 (𝒐)] ≈
1

2𝑁
∑ log 𝑝𝑔 (𝒐𝑖,𝑘).

2𝑁

𝑘=1

  (13) 

We insert all the partial results of the fractional calculation 

obtained in this way into the relation (12) and obtain the 

approximation of the distance value between the distributions. 

To satisfy the symmetry property of the applied distance measure 

𝑑 between the GMM distributions 𝑝𝑔(𝐨)  and 𝑝ℎ(𝐨) of the form 

(12), we take the relation as its final form [22] 

𝑑(𝑝𝑔, 𝑝ℎ) =
1

2
(𝐾𝐿(𝑝ℎ ∥ 𝑝𝑞) + 𝐾𝐿(𝑝𝑔 ∥ 𝑝ℎ)). (14) 

2) Frame Error Rate 

Frame Error Rate (FER) is typically used to evaluate the quality 

of speech recognition at the individual frame level and is defined 

as 

𝐹𝐸𝑅 =
𝑇𝑒𝑟𝑟

𝑇
⋅ 100% (15) 

where 𝑇 is the number of all frames to be recognized and 𝑇𝑒𝑟𝑟  

is the number of frames incorrectly recognized. 

 

3) Standard deviation of observation vector elements 

The last measure of effectiveness selected for comparative 

analysis of the proposed PS-HFCC method with the classical 

HFCC approach are standard deviations calculated separately 

for each coordinate of the cepstral parameter vector. The 

expected and desired result in this case is the reduction of their 
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values for each coordinate, which suggests a smaller spread of 

data and, therefore, a smaller area of their occurrence. 

III. CORRECTION RESULTS 

The chapter presents exemplary results of the application of the 

varying frame length of the speech signal synchronized to the 

fundamental period 𝑇0.  In our experiments, the number of mel-

bands was 29, cepstral coefficients was 𝑁 = 14. The frame 

length was 30 ms with the shift 10 ms. The vowel probabilistic 

acoustic models used in the recognition stage of the research are 

a mixture of 𝐾 = 7 multidimensional normal probability 

distributions with diagonal covariance matrices. 

A. Speech database 

The database for the experiments consists of the recordings of 

40 adult male voices recorded in various Polish cities with a 

sampling rate of 12 kHz and a signal-to-noise ratio of 35 dB. 

For sampling rate 12 kHz and 1024-point calculated DFT, the 

frequency resolution ∆𝑓 is 11.71785 Hz. For each mentioned 

speaker 150 words of Polish were recorded. All these recordings 

were manually segmented and labeled and finally, the set of 

more than 100000 of signal pieces with vowels as the phonetic 

unit was obtained. 

 

B. Pitch synchronized STFT experiments 

Exemplary the amplitude spectrum of the phoneme ‘a’ of Polish 

speech considered in Fig1. and calculated for several 

consecutive frames with the PS-STFT method is depicted in 

Fig.5. Comparison of Fig.1 and Fig.5 shows the evident 

effectiveness of the proposed method for the removal of the 

amplitude spectrum ripples introduced by the quasi-periodicity 

of the excitation. Moreover, the four formants of Polish 

phoneme a′ are clearly visible and their frequency values are in 

order with commonly accepted tables of their occurrences [25]. 

This standard form of the spectrum enables the automatic and 

precise determination of formants and the dynamics of their 

changes in many different problems related to speech 

processing. 
 

 

Fig.5. The new form of amplitude spectrum of phoneme “a” considered in 

Fig.1 as a result of the proposed pitch synchronized STFT with averaging of 3 

consecutive frames 

C. Spectrum correction efficiency 

Consequently, the cepstral representation for each signal frame 

was calculated using the standard and pitch- synchronized 

method. In turn, charts depicted in Fig. 6 and Fig. 7 show the 

standard deviations of the values of the individual cepstral 

coefficients for the two selected phonemes: the vowel ‘e’ (6) 

and ‘a’(7). The blue curve represents the standard deviation of 

the HFCC coefficients, while the red curve represents the 

standard deviation of the PS-HFCC coefficients. It is evident, 

that the standard deviations after correction for both analyzed 

vowels are smaller for each HFCC feature vector coefficient 

separately which clearly implies a reduction in the area of their 

occurrence in multidimensional space. Similar observations and 

results were obtained for all analyzed states, i.e. vowels of 

Polish speech. 

 

Fig.6. Standard deviations of HFCC cepstral coefficients for the vowel ‘e’ 

 

Fig.7. Standard deviations of HFCC cepstral coefficients for the vowel ‘a’ 

D. Global error analysis 

In the subsequent step, for the statistical acoustic models of 

Polish vowels, the Kulback-Leibler Distance (KLD) was 

determined. Figure 8 presents the KLD differences between the 

GMM distributions of the six Polish vowels with and without 

correction in tabular form. Furthermore, the green colour 

indicates an increase in the distance (desired) after correction, 

and the red colour indicates a decrease. In most 

 

Fig.8. Differences in KLD distances after and before correction between the 

6 vowels of Polish speech. The green colour indicates an increase in distance 

and the red colour a decrease. 
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of the analyzed vowels, an increase in these distances is 

observed and the differences are largest for the phonemes a and 

o. Regrettably, a reduction in the distance between the 

phonemes ‘i’ and ‘o’ is also evident. This is because the KLD 

measure uses not only variance but also the mean value vectors 

of the cepstral coefficient estimators to determine the distance. 

As mentioned earlier, a reduction in the variance, and 

consequently greater data concentration, was observed for each 

coordinate in the observation vectors of all the states analyzed, 

but for the phonemes ‘i’ and ‘o’ the decrease in variance was 

small, and a change in the mean value was observed at some 

coordinates. This change (in the 14-dimensional space) may 

have reduced the distance between the distributions, in terms of 

the KLD metric, but is insignificant enough not to have 

degraded the classification results. Finally, for each analyzed 

vowel of Polish speech, the FER measure was calculated. A 

global (for the whole database) analysis of the FER recognition 

errors at the level of single frames of Polish speech vowels is 

presented in Fig.9. The results demonstrate a notable reduction 

 

Fig.9. Global FER values for Polish speech vowels. A comparison of 
classification results obtained using the proposed robust parameterization 

method, PS-HFCC, with those achieved through the classical HFCC and 

MFCC approaches. 

of recognition errors, indicating the effective reduction of FER 

errors through the proposed correction. Spectrum correction has 

been observed to significantly diminish FER values for all of the 

Polish speech vowels. The classification results obtained using 

the PS-HFCC parameterization method proposed in this study 

(expressed in terms of FER) were compared not only with the 

classical HFCC approach but also with the widely known and 

commonly used MFCC parameterization method. The error 

values for individual phonemes, presented in Fig. 9, clearly 

indicate the effectiveness of employing a variable frame length 

of the speech signal.  While these changes may not be 

immediately evident, they are nevertheless valuable in speech 

processing systems with high complexity, where any 

improvement in parameterization quality is crucial. The 

proposed approach of pitch synchronization is useful, results in 

similar classification error reduction, and finds its practical 

application in other representatives of classical cepstral 

parametrization methods (i.e. MFCC, GFCC, etc.). 

IV. CONCLUSIONS 

The modification of the classical cepstral parameterization 

methods with pitch-synchronized STFT, as proposed in this 

paper, has been demonstrated to meet the expected properties. 

By estimating the fundamental period, 𝑇0, and utilizing a 

variable window length that aligns with the current value of 𝑇0, 

it is possible to effectively eliminate the influence of quasi-

periodicity on the amplitude spectrum of voiced speech. 

Moreover, an observable reduction in the area occupied by the 

feature vector coordinates can be seen for each vowel, based on 

the variance of these coordinates. From the other side the 

ambiguous form of the table with calculated values of the 

Kullback-Leibler distances between the GMM distributions of 

Polish speech vowels and improvements in classification errors 

of individual frames measured by the frame-error-rate measure. 

In fact the experiments with the proposed method of pitch 

synchronized cepstral parameterization result in a moderate 

increase in the efficiency of the vowel classification system, due 

to the limitations of the GMM model, which generalizes very 

well, but at the same time is not very sensitive to proposed 

modifications.  It is also worth noting the possibility of 

modifying the proposed PS-STFT method and combining it 

with other algorithms known from the literature. One such 

modification, which utilizes a variable frame length of the signal 

(synchronization with the fundamental period 𝑇0) along with 

inverse filtering applied to smooth the spectrum and estimate 

the vocal tract amplitude response, is described in the work [28]. 

It is still worth keeping in mind that in Automatic Speech 

Recognition any improvement in the classification stage is 

valuable. The literature clearly shows that cepstral 

parameterization methods and the use of the GMM model have 

been most commonly used in the context of Automatic Speech 

Recognition for years, but these observations clearly indicate 

the necessity for further research into the development of new 

effective classifiers for speech technology systems. It is also 

important to note that the variability of the components of the 

feature vector, in addition to the influence of the quasi-

periodicity of the glottal excitation, is affected by a number of 

other factors, including: 

• interpersonal variability 

• intrapersonal variability 

• contextual variability 

• the influence of recording condition etc. 
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