
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2025, VOL. 71, NO. 3, PP. 1–8
Manuscript received February 5, 2025; revised June, 2025. doi: 110.24425/ijet.2025.153620

Infrastructure for the deployment of Large
Language Models: challenges and solutions

Tomasz Walkowiak, and Bartosz Walkowiak

Abstract—Large Language Models are increasingly prevalent,
and their capabilities are advancing rapidly due to extensive
research in this field. A growing number of models are being de-
veloped, with sizes significantly surpassing 70 billion parameters.
As a result, the ability to perform efficient and scalable inferences
on these models is becoming crucial to maximize the utilization
of valuable resources such as GPUs and CPUs. This thesis
outlines a process for selecting the most effective tools for efficient
inference, supported by the results of experiments. Additionally, it
provides a comprehensive description of an end-to-end system for
the inference process, encompassing all components from model
inference and communication to user management and a user-
friendly web interface. Furthermore, we detail the development of
an LLM chatbot that leverages the function-calling capabilities of
LLMs and integrates various external tools, including weather
prediction, Wikipedia information, symbolic math, and image
generation.

Keywords—large language models; model deployment; contin-
uous batching; chatbot; function-calling LLM

I. INTRODUCTION

THE applications of large language models (LLM) are
extensive, covering a wide range of text analysis and

generation systems. Their capability to process natural lan-
guage makes them valuable components in numerous software,
highlighting the need for accessible programming APIs. A
traditional approach, pioneered by OpenAI, involves providing
access to various models through paid public interfaces.

However, relying on external APIs carries the risk of depen-
dence on third-party providers, and processing data outside
one’s organization may be subject to legal restrictions and
the potential for information leakage. Additionally, newly
developed models available through platforms like Hugging
Face are often not easily accessible via API for high-traffic
demands. Consequently, it is worth considering the option of
allowing access to models from within an organization’s own
infrastructure or through external solutions, particularly for
institutions equipped with graphics cards.

This article explores two key issues: the computational
efficiency of large language models during inference and the
establishment of infrastructure for processing text documents
with these models.

The paper is structured as follows: Section II reviews the
technologies and research relevant to the topics discussed

T. Walkowiak and B. Walkowiak are with Faculty of Information and
Communication Technology, Wroclaw University of Science and Technology,
Wroclaw, Poland (e-mail: tomasz.walkowiak@pwr.edu.pl).

in this article. Section III describes the inference speed-up
techniques employed and presents a series of experiments
carried out to identify the most effective method for de-
ploying large language models. Section IV offers an in-
depth examination of the architecture for deploying LLMs.
Finally, Section V presents the architecture of a Multi-Service
Chatbot that, in addition to its standard LLM functionalities,
incorporates features such as access to weather forecasts and
image generation. We also address the challenges encountered
during the implementation of the chatbot and propose solutions
to these issues.

II. RELATED WORKS

Large Language Models have become a significant and im-
portant resource used by many users. Models in this group are
steadily increasing in capability as well as size, a phenomenon
that leads to an increase in the computing power needed to
run them, and therefore a decrease in accessibility for the
average user. Furthermore, a continuous increase in the size
of published models can be observed, with the core size of
models increasing from 7B to 70B and even 340B1. Moreover,
the amount of vRAM needed to run them is also increasing
due to the rising length of supported contexts. However, many
solutions exist and are being developed whose developers
are trying to contribute to optimizing and speeding up the
inference process on LLMs.

Methods such as quantization reduce computational costs
by reducing the precision of the operations performed. The
use of this approach allows large language models to be run
with limited resources, such as graphics card memory. The
disadvantages of this solution are slower generation speeds
and, in extreme cases, significant degradation in the quality of
the model output. [1], [2]

Further solutions focus on efficiency of the use of available
resources. An example is the llama-cpp [3] project, based on
the GGML [4] format, which enables large models to run
efficiently on the CPU. Another solution is ONNX [5], which
optimizes the use of GPU or CPU, allowing the process of
generating successive tokens to be accelerated.

There are also approaches that increase the speed of in-
ference through the use of techniques that parallelize compu-
tation. Many strategies for increasing the speed of computa-
tion through parallelism are provided by the Colossal-AI [6]

1https://huggingface.co/nvidia/Nemotron-4-340B-Instruct

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

https://huggingface.co/nvidia/Nemotron-4-340B-Instruct
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/

2 T. WALKOWIAK, B. WALKOWIAK

toolkit. Among the available strategies are those such as auto-
parallelism [7] or sequence-parallelism [8].

The last group of solutions, which is the most significant
for the end user, is those that influence how available GPU re-
sources are used. Such a technique is, among others, the ZeRO
(Zero Redundancy Optimizer) technology, which combines
model weights on the CPU or NVMe and only passes such
prepared weights to the GPU for inference. This technique,
despite its revolutionary nature, is not being developed. Other
techniques that are being dynamically developed and con-
tribute to optimizing the memory consumption of the graphics
card are FlashAttention [9] and PagedAttention [10].

Large Language Models are capable of handling a wide
range of tasks. However, they lack access to real-time infor-
mation and, in some cases, existing tools may outperform
LLMs. This issue can be addressed by integrating LLM
with external tools [11], [12] through function calling [13].
Driven by practical applications, function calls can become
quite complex due to the variety and complexity of the APIs
available [12].

III. ENGINE SELECTION

In order to select and then implement an effective and effi-
cient system for handling large language models, a comparison
of available state-of-the-art solutions was carried out.

A. Inference Time Assessment

An important element of the research was the choice of a
method to measure the inference time, which was the main
performance indicator for the evaluated solutions. Available
metrics for measuring generation speed include: Time To First
Token, which allows us to compare the responsiveness of the
solutions, Time Per Output Token, which includes the average
time it takes to generate one response token, or Throughput,
which is an extension of the previous metric, as it also
takes into account the speed-ups resulting from multi-query
combination techniques.

However, the metrics mentioned do not provide a compre-
hensive evaluation of model inference techniques. As high-
lighted in [14], the average number of tokens generated can
vary depending on the length of the generated sequence.
Therefore, the performance of the inference system should
be measured in terms of the average number of tokens
per second across different sequence-length intervals. This
approach ensures that the system’s efficiency is consistent
and not affected by anomalies within specific response length
ranges, something that would be overlooked if only a single
average across all lengths was considered.

In addition, the described approach for the measurement of
metrics in intervals of different output lengths was applied
to the metric of total processing time. The total query han-
dling time consists of both the actual processing time and
the queuing time. This approach is driven by the need to
assess the actual performance of the methods from an end-
user perspective; measuring processing times alone could be
misleading and not give a complete picture of the technology
under test.

B. Attention and Batching Techniques

Techniques to optimize computation of attention in trans-
former based large language models can focus on various
bottlenecks that slow down the computation. One of the key
factors for inference speed is the number of I/O operations to
High Bandwidth Memory required to perform the processing.
Reducing the frequency of these costly operations is what the
FlashAttention [9] algorithm is focused on. The calculations
are split into blocks, avoiding loading the entire matrix to
calculate the attentions. For additional speed-up, the Softmax
Normalization Factor, needed when calculating the attentions
during the backward transition, has been moved to the highly
efficient SRAM located on the GPU chip.

Another important factor is how the memory used during
query processing is allocated. This memory can be divided
into a static part, where the loaded model weights are located,
and a dynamic part, the content of which changes during
computation. The PagedAttention [10] technique concentrates
on optimizing the use of the dynamic part of this memory
and uses techniques that are significantly different from the
standard approach. In approaches other than PagedAttention,
the dynamic part of the memory is pre-allocated, up to a size
corresponding to the maximum length of the output. In addi-
tion, this memory is continuously indexed, which significantly
hinders shared computation. However, in the PagedAttention
algorithm, the aforementioned disadvantages are solved by
dividing the KV cache into blocks of fixed size, which are
not stored in continuous memory. This makes it possible to
share part of the computation and also to use the available
memory more efficiently.

A technique that can speed up the computation of large
numbers of requests is batching, which is widely used for
models with different types of input, both images and lan-
guages. Batching involves grouping together multiple requests
and processing them at the same time. This solution is directly
tailored for the use of GPUs, which are designed to process a
single instruction for multiple data (SIMD). Among the known
approaches to this issue is static batching, in which requests
are grouped together and then waited until all have been
processed. This solution can be inefficient because the length
of the computation cannot be predicted, so some computations
will be performed faster, and some resources will be unused
while waiting for the other computations to be completed. An
approach that solves the aforementioned problem is continuous
batching [15], in which new requests are passed to the compu-
tation when the previous ones have finished, so that individual
slots are better filled. The use of continuous batching increases
the efficiency of query processing by maximizing the use of
available GPU resources.

C. Examined Methods

In order to select an inference method, we conducted
research on advanced methods that support mechanisms for
parallelization and batching of computation, namely Hugging-
Face Text Generation Inference2 and vLLM [16]. Both of

2https://github.com/huggingface/text-generation-inference

https://github.com/huggingface/text-generation-inference

INFRASTRUCTURE FOR THE DEPLOYMENT OF LARGE LANGUAGE MODELS: CHALLENGES AND SOLUTIONS 3

these methods are open and dynamically developed projects.
HuggingFace CasualLM, a part of Transformers library [17],
which is a popular and often the first solution of choice, has
been chosen as a reference for the selected solutions.

1) HuggingFace CasualLM: Through widespread and fre-
quent use, the HuggingFace-created Transformer library is a
standard solution when it comes to running language models.
Part of this library is the module responsible for running
causal language models, using left-handed attention to predict
the next token in a sequence. Due to the aforementioned
prevalence, the CausalLM module is the base solution when
running inferences on LLMs, but it does not support a number
of solutions to optimize and speed up the process of next token
generation.

2) HuggingFace Text Generation Inference: Another so-
lution from HuggingFace that provides support for methods
that optimize the inference process such as FlashAttention
and PagedAttention is Text Generation Inference (TGI). The
solution also supports techniques such as continuous batch-
ing, quantization, and streaming responses using Server Site
Events. It is a collection of tools tailored to run Large
Language Models simply and efficiently.

3) vLLM: A technology that also supports the use of
the PagedAttention mechanism for efficient key and value
memory management is vLLM. This open source project is
under dynamic development and its authors have implemented
support for a number of useful features. These solutions
include continuous batching, which ensures that there are
no significant slowdowns when processing large numbers of
requests. The vLLM project also supports a number of model
quantization techniques, including GPTQ [18] quantisations.

D. Experiments and Results

Experiments were conducted to compare the proposed meth-
ods in terms of inference speed and solution scalability. The
tests were performed using an NVIDIA 80GB A100 graphics
card. Given the variety of large language models with different
parameter counts, we evaluated models ranging from the small
TinyLlama [19] with one million parameters, to OpenChat [20]
with the popular 7B parameter size, and up to the slightly
larger Vicuna-13B [21].

During the speed and scalability experiments, a dataset
consisting of short answer questions and selected questions
from the TruthfulQA [22] collection was used. By structuring
the set of questions in this way, it was possible to obtain
responses of varying lengths, from very short to long, which
was essential to measure speed according to the methodology
adopted in our study. The collection contains 50 questions that
were run many times during the experiments, in order to make
the results not dependent on the randomness present in Large
Language Models.

Inference speed was measured as the average speed of
generating a response to a single prompt for response lengths
falling within three ranges (up to 30 tokens, 31-300 tokens,
above 300 tokens). Table I presents the results of the experi-
ment comparing the inference speed across different methods.
It can be seen that the vLLM library is the most efficient of the

tested methods; in addition, the average speed of generation
is constant within a given model, independent of the length
of the response. In contrast, for the TGI solution, the average
speed increases for longer responses, and the average speeds
are even more than ten times lower compared to vLLM.

TABLE I
AVERAGE SPEED [TOKENS/S] AS A FUNCTION OF OUTPUT SIZE FOR THREE
MODELS OF VARYING SIZES AND THREE DIFFERENT INFERENCE METHODS

ANALYZED

Model Output size in tokens Method
HF TGI vLLM

TinyLlama (1B)
1-30 51 15 260

31-300 51 60 290
301- 52 95 280

OpenChat (7B)
1-30 38 4 83

31-300 33 48 85
301- 26 70 83

Vicuna (13B)
1-30 34 6 50

31-300 30 34 50
301- 15 44 49

The scalability of the tested solutions was measured by
examining their resistance to a decrease in response speed
under the influence of a large number of queries. To this end,
the throughput of the models was measured under the influence
of batches of different sizes. Query sets were created by
randomly arranging a set of 2,500 prompts, which contained
50 prompts with different response lengths repeated 50 times.
In each round of the experiment, responses to a set of queries
were generated while maintaining a fixed batch size for each of
the solutions tested. The result of the measurements, presented
in Table II, is the average processing speed, calculated as the
total number of tokens generated divided by the processing
time of the entire set.

In terms of scalability, the weakest performance is shown
by HF CausalLM, for which average speeds are 3 to even 30
times lower compared to the other solutions. This result of the
experiment can be attributed to the influence of different types
of batching, where the basic HF library uses static batching
and the other methods use continuous batching. In addition,
the memory consumption optimization techniques used within
vLLM and TGI, such as PagedAttention, allow large batch
sizes to be processed, where the HF CausalLM, which does
not use the aforementioned techniques, ran out of graphics
card memory.

Furthermore, the TGI method is significantly less efficient
when processing multiple queries at the same time compared
to vLLM, this relationship is particularly evident with larger
batch sizes. Although both methods support the same attention
optimization and batching techniques, the difference between
them can be more than 2 times for the smaller models
and up to more than 1.5 times for the largest model under
investigation.

IV. INFRASTRUCTURE ARCHITECTURE DESIGN

A. Overview

Based on the experimental results presented in the previous
section, we have designed and implemented the infrastructure

4 T. WALKOWIAK, B. WALKOWIAK

TABLE II
AVERAGE SPEED [TOKENS/S] AS A FUNCTION OF BATCH SIZE FOR THREE

MODELS OF VARYING SIZES AND THREE DIFFERENT INFERENCE METHODS
ANALYZED.

TinyLlama (1B)
Batch size HF TGI vLLM

1 52 117 283
2 98 216 527
16 189 1127 2683
32 149 1732 3940
64 127 2434 5145

128 106 2837 5358
256 OoM 2837 5565
512 OoM 2819 5550

OpenChat (7B)
Batch size HF TGI vLLM

1 30 82 85
2 36 155 162
16 29 762 1024
32 29 1348 1681
64 26 2110 2488

128 24 2344 3093
256 OoM 2364 3411
512 OoM 2005 3507

Vicuna (13B)
Batch size HF TGI vLLM

1 17 49 50
2 16 95 97
16 11 542 608
32 11 842 984
64 10 1171 1468

128 9 1167 1795
256 OoM 1164 1874
512 OoM 1167 1924

for deploying Large Language Models using the vLLM library.
However, several additional components, as illustrated in the
schema in Fig. 1, have been incorporated. The system consists
of:

1) vLLM modules for LLM inference,
2) Proxy modules for accessing external model providers

(e.g., OpenAI),
3) Sent module functioning as a router that manages au-

thorization,
4) Auth & Billing module for tracking model usage by users

and enforcing access rules.
The system includes two APIs: the first (oAPI) adheres to

the OpenAI specification3, while the second, the Chat API,
provides access to a web-based GUI, enabling conversational
capabilities directly within a web browser.

B. Communication Protocols

Two communication techniques are used between the sys-
tem components: REST and the AMQP4 protocol. REST is
the obvious choice, as it is the standard for any APIs. Due
to the streaming nature of conversations with LLMs (where

3https://platform.openai.com/docs/api-reference/chat
4https://www.amqp.org

Chat frontend

Chat APIoAPI

Sent Auth & Billing

vLLM Proxy

AMQPAMQP

REST

REST REST

REST

API client

Model
provider

Fig. 1. Diagram of the architecture for LLM deployment with the type of
communication between the elements.

responses are generated token by token in real-time), Server-
Sent Events (SSE), part of the HTML5 EventSource standard5,
are employed.

For communication between the Sent service and LLM
services (vLLM and Proxy), we utilize a message broker,
RabbitMQ6, which implements the AMQP protocol. Rab-
bitMQ is responsible for message queueing and enables simple
horizontal scaling. Moreover, RabbitMQ offers a GUI interface
that allows administrators to monitor request flow and load on
LLM services over short time intervals (up to an hour), making
system administration much more manageable.

C. Chat API and Frontend

Large Language Models are provided through a web GUI,
which consists of a front-end application using the node JS
framework and a back-end part exposing the API using the
FastAPI [23] library in Python. The http requests triggered by
user actions are handled by the backend, which is responsible
for interaction with the inference engine on the models as well
as user authentication and authorization.

5https://html.spec.whatwg.org
6https://www.rabbitmq.com

https://platform.openai.com/docs/api-reference/chat
https://www.amqp.org
https://html.spec.whatwg.org
https://www.rabbitmq.com

INFRASTRUCTURE FOR THE DEPLOYMENT OF LARGE LANGUAGE MODELS: CHALLENGES AND SOLUTIONS 5

As part of the architecture of the web GUI service, a
non-relational MongoDB database is also used, in which the
queries and answers of the models are stored, allowing access
to the conversation history. A mechanism has also been im-
plemented that allows for the export of each conversation to a
spreadsheet, facilitating the analysis of the model’s responses.

In addition, both the inference part on the models and
the back-end and front-end applications of the Web window
support the use of models in streaming mode, using the Server
Site Events mechanism. The use of this technology ensures
that the response of the models is displayed continuously and
the waiting time for the start of the response is minimal.

The end user can take full advantage of the capabilities of
the models provided, without worrying about implementation
or setup, while still maintaining control over generation by
adjusting parameters such as top_p, temperature and repetition
penalty. As part of the interaction with the large language
model, it is also possible to set the value of the system prompt.

D. System Usage

Development of the system began in April 2024, and within
the next six months, it handled over 11 million prompts,
generating more than 800 million tokens.

V. MULTI-SERVICE CHATBOT

A. Introduction

Large Language Models are capable of solving a wide range
of tasks. However, they lack access to real-time information
(such as current weather) and, in some cases, existing tools
offer superior capabilities (e.g. symbolic math packages).
These limitations can be addressed by integrating LLMs with
external tools through the use of function calling [13].

To illustrate the LLM and functional calling capabilities, we
have developed a Multi-Service Chatbot7 that, in addition to
its standard LLM capabilities, is equipped with the following
functionalities:

1) image generation,
2) weather forecasting,
3) solving mathematical equations,
4) accessing Wikipedia information.
During the design process, we assumed that only public

models (i.e. models that could run in the infrastructure pre-
sented in Chapter IV could be utilized (thus excluding models
such as GPT-4o). Additionally, we assumed that the chatbot
would converse in Polish. To achieve this functionality, we re-
quire a dedicated reasoning module that analyzes user prompts
and determines whether the response should be generated by a
general-purpose LLM or by a tool designed for a specific task.
This can be implemented using function-calling-aware LLMs.
These models are trained to analyze prompts that include a list
of function descriptions and return the function name along
with the arguments to be called.

Typically, the function to be invoked is described by a JSON
object (see example in Fig. 2), which contains the function

7The link to the chat is not provided due to anonymization requirements;
it will be shared if the paper is accepted.

name, a natural language description, and the definition of the
function’s parameters. The model then responds with a JSON
output containing the selected function name and parameters
(both names and values derived from the user prompt).

An example result for the prompt "generate an image of a
cat and dog"8 is shown in Fig. 3.

{ "type": "function",
"function": {
"name": name,
"description":

"Generates image based on
a user description
translated into English",

"parameters": {
"type": "object",
"properties": {
"description": {
"type": "string",
"description": "The description
of an image that user has typed,
the description has to be in
English."}

},
"required": ["normal_prompt"]}}}

Fig. 2. Example of a JSON data block displayed using the verbatim
environment.

{ "name": "generate_image",
"parameters": {
"description": "dog and cat"

}
}

Fig. 3. Examplar response.

B. Chatbot Architecture

The architecture overview is presented in Fig. 4. The
chatbot consists of a router, a function-calling LLM (denoted
f-LLM), a default LLM, and a set of agents for dedicated
functionalities. The router receives input messages, analyzes
user questions, and sends them to the function-calling LLM.
Based on the response, it directs the query to one of the
selected tool agents or to the default LLM.

As mentioned, the chatbot operates in Polish, which presents
challenges, since all function-calling datasets used for training
LLMs are English-based. Furthermore, Polish models such
as Bielik [24] or Qura9 are not trained for function-calling
capabilities. The non-English nature of the conversation ne-
cessitates additional efforts, such as translating detected user
commands into English (as required by image generation
models) and obtaining the correct base forms, which can be
particularly challenging for named entities in highly inflected

8The original prompt was in Polish: "Wygeneruj obraz psa i kota"
9https://huggingface.co/OPI-PG/Qra-13b

https://huggingface.co/OPI-PG/Qra-13b

6 T. WALKOWIAK, B. WALKOWIAK

languages like Polish. For function calling, we utilize Llama
3.1 instruction models [25] that are multilingual, do not gener-
ate texts very well in Polish, but understand Polish instructions
and are capable of function-calling.

An important aspect of the function-calling LLM module is
its ability to respond quickly and properly identify cases where
the user prompt is not related to any defined functions. This
was achieved through two approaches. First, we implemented
a default function call with the description: "If none of the
other functions is needed, simply call this" 10.

Second, since the function-calling LLM still has a tendency
to answer some user prompts without invoking the default
function, we developed a method for rapid detection of such
cases. Waiting for the end of the LLM’s response can take a
long time, especially when the answer is lengthy (as discussed
in Section III). To address this, we used the LLM streaming
response mechanism. The router analyzes the first token of the
response. Since Llama 3.1 prefixes all function call responses
with the token <|python_tag|>, it can detect if the model has
failed to invoke the default function and is instead responding
directly to the user prompt.

LLM

Internet

f-LLM

Router

Agents

Prompt

Response

Fig. 4. Diagram of the multi service chatbot.

C. Tool Agents

1) Image generation: The function-calling LLM transforms
the user prompt into an English image description (see Fig. 3),
allowing us to leverage various image generation models. For

10https://github.com/vllm-project/vllm/issues/7912

Fig. 5. The exemplar response of FLUX.1 [schnell] model for a prompt "dog
and cat".

this purpose, we utilized the FLUX.1 [schnell] model11, which
features a hybrid architecture that integrates transformer and
diffusion techniques [26]. This model was implemented as an
additional module within the previously described infrastruc-
ture, and the API referenced in Fig. 1 was enhanced with a
new endpoint that complies with OpenAI’s image generation
specifications12. Consequently, it includes the functionality
to return an image as a URL, which is hosted within our
infrastructure for one hour. An example result is illustrated
in Fig. 5.

2) Weather forecast: The weather forecast tool uses the
OpenWeather API13 to obtain JSON encoded information of
the current weather in place which name is extracted by
the functional-capable LLM. The forecast values obtained are
converted into text in Polish by a template and the langauge
of the forecats is imporved by the default LLM.

3) Other tools: Wikipedia tool uses the MediaWiki API14

from obtain information from wikpedia, based on query ob-
tained from function-call LLM. The math tool uses the SymPy
[27] a Python library for symbolic mathematics, it allows to
evaluate a numercial expression as well as simplifing symbolic
one.

D. Problems Encountered

During the implementation of the chatbot, we encountered
several challenges related to the quality of function detection
by the LLM. Firstly, most of the open source functionally
capable LLMs do not support Polish. Consequently, we opted

11https://huggingface.co/black-forest-labs/FLUX.1-schnell
12https://platform.openai.com/docs/guides/images
13https://openweathermap.org/api
14https://www.mediawiki.org/wiki/API

https://github.com/vllm-project/vllm/issues/7912
https://huggingface.co/black-forest-labs/FLUX.1-schnell
https://platform.openai.com/docs/guides/images
https://openweathermap.org/api
https://www.mediawiki.org/wiki/API

INFRASTRUCTURE FOR THE DEPLOYMENT OF LARGE LANGUAGE MODELS: CHALLENGES AND SOLUTIONS 7

for the Llama 3.1 models. We tested both the 8B and 70B
versions of Llama 3.1. The 8B model is significantly faster
and requires fewer resources; it can be stored alongside three
similar models on a single NVIDIA A100 card, while the 70B
model requires at least two such cards. However, the quality
of the 70B model is markedly superior to that of the 8B model
when it comes to translating image description texts into Polish
and accurately obtaining lemmas for named entities in Polish
(as used for Wikipedia and weather tools). The 8B model
tends to alter Polish letters in the analyzed named entities (for
example, "Lądku" is lemmatized as "Lådek"). This raises an
important question: should we prioritize speed or quality?

Although the Llama 3.1 70B model yields better results
than its 8B counterpart, it still makes occasional errors, such
as failing to translate image descriptions into English, which
can lead to incorrect image generation.

Another issue is the context of the prompt. Both analyzed
Llama 3.1 models tend to lose track of the user’s request,
specifically, the selection of the appropriate function, as the
chat conversation expands. We tried to use the default model
to extract user queries from lengthy conversations, but it often
failed in many instances. As a result, we implemented a
simple workaround: the function-calling mechanism analyzes
only the last user prompt. While this approach works well,
it sacrifices the ability to maintain context for functional
tools, meaning that the chatbot cannot answer questions like,
"What is the weather in the city we discussed earlier?".
This issue requires further investigation and experimentation
with different models and prompts to identify an acceptable
solution.

Other challenges were related to the model’s tendency to
repeat the structure of previous responses. To uphold the rights
of authors of the models, APIs, and libraries we utilize, we
include information about the sources of the provided data
at the end of each tool’s response. This is achieved through
the use of markup languages and URLs linking to the data or
model sources. However, this practice has led to unexpected
behavior from the default language model. After a series
of responses from tools that include acknowledgments, the
default LLM, which answers general questions not addressed
by the tool agents, tends to incorporate acknowledgments into
its own responses.

Additionally, if an image generation request is not captured
by a functionally capable LLM, the default LLM generates
fake links to images, following the previous links created
by the image tool. Therefore, it is necessary to remove all
acknowledgments and links to generated images from prior
assistant messages before sending them to the default LLM.
These messages must be structured in a way that makes them
easily identifiable by specific rules and encapsulated in a
manner that is unlikely to be generated by an LLM.

VI. CONCLUSIONS

The study examines the effectiveness of three inference
approaches for Large Language Models: the standard Hug-
gingFace transformers library, the HuggingFace Text Gen-
eration Inference server, and the open-source vLLM library.

Experiments conducted with different batch sizes and model
sizes demonstrate that vLLM consistently excels compared to
the other methods.

Therefore, we have designed and implemented an infras-
tructure based on the vLLM library for LLM inference as a
service. The infrastructure is fully operational and has been
generating an average of 4 million tokens per day over the
past two months. In addition, a construction of a multi-service
chatbot built on the described architecture is presented, illus-
trating the possibilities of combining LLMs with external APIs
or models operating in another modality (image generation).
Various detailed problems associated with the implementation
of such class systems are discussed, along with the solutions
applied to these problems.

ACKNOWLEDGEMENTS

The work was financed as part of the investment: "CLARIN
ERIC – European Research Infrastructure Consortium: Com-
mon Language Resources and Technology Infrastructure" (pe-
riod: 2024-2026) funded by the Polish Ministry of Science and
Higher Education (Programme: "Support for the participation
of Polish scientific teams in international research infrastruc-
ture projects"), agreement number 2024/WK/01.

REFERENCES

[1] T. Dettmers, M. Lewis, Y. Belkada, and L. Zettlemoyer, “Gpt3.int8():
8-bit matrix multiplication for transformers at scale,” in NeurIPS,
2022. [Online]. Available: http://papers.nips.cc/paper_files/paper/2022/
hash/c3ba4962c05c49636d4c6206a97e9c8a-Abstract-Conference.html

[2] Z. Li, E. Wallace, S. Shen, K. Lin, K. Keutzer, D. Klein, and
J. Gonzalez, “Train big, then compress: Rethinking model size for
efficient training and inference of transformers,” in Proceedings of
the 37th International Conference on Machine Learning, ICML 2020,
13-18 July 2020, Virtual Event, ser. Proceedings of Machine Learning
Research, vol. 119. PMLR, 2020, pp. 5958–5968. [Online]. Available:
http://proceedings.mlr.press/v119/li20m.html

[3] G. Gerganov, “Inference of LLaMA model in pure C/C++,” 2023.
[Online]. Available: https://github.com/ggerganov/llama.cpp

[4] ——, “GGML - tensor library for machine learning,” 2023. [Online].
Available: https://github.com/ggerganov/ggml

[5] J. Bai et al., “ONNX: Open neural network exchange,” 2019. [Online].
Available: https://github.com/onnx/onnx

[6] S. Li, H. Liu, Z. Bian, J. Fang, H. Huang, Y. Liu, B. Wang, and
Y. You, “Colossal-AI: A unified deep learning system for large-scale
parallel training,” in Proceedings of the 52nd International Conference
on Parallel Processing, ser. ICPP ’23. New York, NY, USA: Association
for Computing Machinery, 2023, p. 766–775.

[7] Y. Liu, S. Li, J. Fang, Y. Shao, B. Yao, and Y. You, “Colossal-Auto:
Unified automation of parallelization and activation checkpoint for large-
scale models,” arXiv preprint arXiv:2302.02599, 2023.

[8] S. Li, F. Xue, C. Baranwal, Y. Li, and Y. You, “Sequence Parallelism:
Long sequence training from system perspective,” in Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), A. Rogers, J. Boyd-Graber, and N. Okazaki,
Eds. Toronto, Canada: Association for Computational Linguistics, Jul.
2023, pp. 2391–2404.

[9] T. Dao, D. Y. Fu, S. Ermon, A. Rudra, and C. Re, “Flashattention:
Fast and memory-efficient exact attention with IO-awareness,” in
Advances in Neural Information Processing Systems, A. H. Oh,
A. Agarwal, D. Belgrave, and K. Cho, Eds., 2022. [Online]. Available:
https://openreview.net/forum?id=H4DqfPSibmx

[10] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. E.
Gonzalez, H. Zhang, and I. Stoica, “Efficient memory management for
large language model serving with pagedattention,” in Proceedings of
the ACM SIGOPS 29th Symposium on Operating Systems Principles,
2023.

http://papers.nips.cc/paper_files/paper/2022/hash/c3ba4962c05c49636d4c6206a97e9c8a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/c3ba4962c05c49636d4c6206a97e9c8a-Abstract-Conference.html
http://proceedings.mlr.press/v119/li20m.html
https://github.com/ggerganov/llama.cpp
https://github.com/ggerganov/ggml
https://github.com/onnx/onnx
https://openreview.net/forum?id=H4DqfPSibmx

8 T. WALKOWIAK, B. WALKOWIAK

[11] W. Liu, X. Huang, X. Zeng, X. Hao, S. Yu, D. Li, S. Wang, W. Gan,
Z. Liu, Y. Yu, Z. Wang, Y. Wang, W. Ning, Y. Hou, B. Wang, C. Wu,
X. Wang, Y. Liu, Y. Wang, D. Tang, D. Tu, L. Shang, X. Jiang,
R. Tang, D. Lian, Q. Liu, and E. Chen, “ToolACE: Winning the
points of LLM function calling,” CoRR, 2024. [Online]. Available:
https://arxiv.org/abs/2409.00920

[12] Y. Qin, S. Liang, Y. Ye, K. Zhu, L. Yan, Y. Lu, Y. Lin, X. Cong,
X. Tang, B. Qian, S. Zhao, L. Hong, R. Tian, R. Xie, J. Zhou,
M. Gerstein, dahai li, Z. Liu, and M. Sun, “ToolLLM: Facilitating large
language models to master 16000+ real-world APIs,” in The Twelfth
International Conference on Learning Representations, 2024. [Online].
Available: https://openreview.net/forum?id=dHng2O0Jjr

[13] A. Parisi, Y. Zhao, and N. Fiedel, “TALM: tool augmented language
models,” CoRR, vol. abs/2205.12255, 2022. [Online]. Available:
https://doi.org/10.48550/arXiv.2205.12255

[14] B. Walkowiak and T. Walkowiak, “Implementation of language models
within an infrastructure designed for natural language processing,”
International Journal of Electronics and Telecommunications, vol. 70,
no. 1, p. 153 – 159, 2024. [Online]. Available: https://www.ijet.pl/
index.php/ijet/article/download/10.24425-ijet.2024.149525/1194

[15] G.-I. Yu, J. S. Jeong, G.-W. Kim, S. Kim, and B.-G. Chun,
“Orca: A distributed serving system for Transformer-Based generative
models,” in 16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 22). Carlsbad, CA: USENIX Association,
Jul. 2022, pp. 521–538. [Online]. Available: https://www.usenix.org/
conference/osdi22/presentation/yu

[16] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. E.
Gonzalez, H. Zhang, and I. Stoica, “Efficient memory management for
large language model serving with pagedattention,” in Proceedings of
the ACM SIGOPS 29th Symposium on Operating Systems Principles,
2023.

[17] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer,
P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger,
M. Drame, Q. Lhoest, and A. M. Rush, “Transformers: State-of-
the-art natural language processing,” in Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing:
System Demonstrations. Online: Association for Computational
Linguistics, Oct. 2020, pp. 38–45. [Online]. Available: https:
//www.aclweb.org/anthology/2020.emnlp-demos.6

[18] E. Frantar, S. Ashkboos, T. Hoefler, and D. Alistarh, “GPTQ: accurate
post-training quantization for generative pre-trained transformers,”
CoRR, vol. abs/2210.17323, 2022. [Online]. Available: https://doi.org/
10.48550/arXiv.2210.17323

[19] P. Zhang, G. Zeng, T. Wang, and W. Lu, “TinyLlama: An open-source
small language model,” arXiv preprint arXiv:2401.02385, 2024.

[20] G. Wang, S. Cheng, X. Zhan, X. Li, S. Song, and Y. Liu,
“OpenChat: Advancing open-source language models with mixed-
quality data,” in The Twelfth International Conference on Learning
Representations, 2024. [Online]. Available: https://openreview.net/
forum?id=AOJyfhWYHf

[21] L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang,
Z. Lin, Z. Li, D. Li, E. Xing, H. Zhang, J. E. Gonzalez, and
I. Stoica, “Judging LLM-as-a-judge with MT-bench and chatbot
arena,” in Thirty-seventh Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2023. [Online]. Available:
https://openreview.net/forum?id=uccHPGDlao

[22] S. Lin, J. Hilton, and O. Evans, “TruthfulQA: Measuring how models
mimic human falsehoods,” in Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers),
S. Muresan, P. Nakov, and A. Villavicencio, Eds. Dublin, Ireland:
Association for Computational Linguistics, May 2022, pp. 3214–3252.

[23] S. Ramírez, “FastAPI - framework, high performance, easy to
learn, fast to code, ready for production,” 2024. [Online]. Available:
https://github.com/fastapi/fastapi

[24] K. Ociepa, L. Flis, R. Kinas, A. Gwozdziej, K. Wrobel, SpeakLeash
Team, and Cyfronet Team, “Bielik-11b-v2.3-instruct model card,” 2024.
[Online]. Available: https://huggingface.co/speakleash/Bielik-11B-v2.
3-Instruct

[25] A. Grattafiori et al., “The llama 3 herd of models,” CoRR, 2024.
[Online]. Available: https://arxiv.org/abs/2407.21783

[26] P. Esser, S. Kulal, A. Blattmann, R. Entezari, J. Müller, H. Saini,
Y. Levi, D. Lorenz, A. Sauer, F. Boesel, D. Podell, T. Dockhorn,
Z. English, and R. Rombach, “Scaling rectified flow transformers
for high-resolution image synthesis,” in Forty-first International
Conference on Machine Learning, ICML 2024, Vienna, Austria,
July 21-27, 2024. OpenReview.net, 2024. [Online]. Available:
https://openreview.net/forum?id=FPnUhsQJ5B

[27] A. Meurer et al., “SymPy: symbolic computing in python,” PeerJ
Computer Science, vol. 3, p. e103, Jan. 2017. [Online]. Available:
https://doi.org/10.7717/peerj-cs.103

https://arxiv.org/abs/2409.00920
https://openreview.net/forum?id=dHng2O0Jjr
https://doi.org/10.48550/arXiv.2205.12255
https://www.ijet.pl/index.php/ijet/article/download/10.24425-ijet.2024.149525/1194
https://www.ijet.pl/index.php/ijet/article/download/10.24425-ijet.2024.149525/1194
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.48550/arXiv.2210.17323
https://doi.org/10.48550/arXiv.2210.17323
https://openreview.net/forum?id=AOJyfhWYHf
https://openreview.net/forum?id=AOJyfhWYHf
https://openreview.net/forum?id=uccHPGDlao
https://github.com/fastapi/fastapi
https://huggingface.co/speakleash/Bielik-11B-v2.3-Instruct
https://huggingface.co/speakleash/Bielik-11B-v2.3-Instruct
https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=FPnUhsQJ5B
https://doi.org/10.7717/peerj-cs.103

	Introduction
	Related Works
	Engine Selection
	Inference Time Assessment
	Attention and Batching Techniques
	Examined Methods
	HuggingFace CasualLM
	HuggingFace Text Generation Inference
	vLLM

	Experiments and Results

	Infrastructure Architecture Design
	Overview
	Communication Protocols
	Chat API and Frontend
	System Usage

	Multi-Service Chatbot
	Introduction
	Chatbot Architecture
	Tool Agents
	Image generation
	Weather forecast
	Other tools

	Problems Encountered

	Conclusions
	References

