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Utilizing CNN architectures for non-invasive
diagnosis of speech disorders – further experiments

and insights
Filip Ratajczak, Mikołaj Najda, and Kamil Szyc

Abstract—This research investigated the application of deep
neural networks for diagnosing diseases that affect the voice
and speech mechanisms through the non-invasive analysis of
vowel sound recordings. Using the Saarbruecken Voice Database,
the voice recordings were converted to spectrograms to train
the models, specifically focusing on the vowels /a/, /u/, and /i/.
The study used Explainable Artificial Intelligence (XAI) method-
ologies to identify essential features within these spectrograms
for pathology identification, with the aim of providing medical
professionals with enhanced insight into how diseases manifest
in sound production. The F1 Score performance evaluation
showed that the DenseNet model scored 0.70 ± 0.03 with a
top of 0.74. The findings indicated that neither vowel selection
nor data augmentation strategies significantly improved model
performance. Additionally, the research highlighted that signal
splitting was ineffective in enhancing the models’ ability to extract
features. This study builds on our previous research [1], offering
a more comprehensive understanding of the topic. 1
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I. INTRODUCTION

W ITHIN the realm of medical diagnostics, there is an
increasing focus on creating non-invasive and easily

accessible tests that aim to improve patient quality of life while
also lowering hospital expenses. The emergence of machine
learning (ML) and artificial intelligence (AI) is paving the way
for innovative approaches that hold the potential to improve
diagnostics by providing solutions that are minimally intrusive,
economically viable, and broadly applicable [2], [3].

The early detection of diseases represents a significant
advancement in modern medicine. It is well established that
prompt diagnosis of conditions can significantly improve pa-
tient outcomes. Using extensive patient data, deep learning
(DL) models are used to analyze large amounts of information,
revealing patterns that traditional diagnostic methods cannot
detect. These innovations can help with disease detection,
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facilitating more timely and accessible interventions [4] [5],
[6].

Recent strides in speech analysis via machine learning
have facilitated the detection of diseases by scrutinizing vocal
attributes like pitch, tone, rhythm, and breath control. The
core premise of this approach is that certain diseases can
be pinpointed by noting subtle changes in a patient’s voice
or speech patterns, providing an auxiliary tool for health-
care professionals during examinations [7]. Such observations
can sometimes be detected before more apparent symptoms
develop, enhancing speech analysis’s diagnostic capability.
There is already substantiation that speech can function as
a biomarker for conditions such as neurological [8], mental
[9], voice [10], and respiratory disorders [11], with continuing
research seeking to expand its use to a wider array of diseases,
including heart failure [12].

This research seeks to showcase the potential of analyz-
ing speech data in healthcare technologies by differentiating
between people with normal voices and those suffering from
voice disorders. The analysis will focus on the frequency pat-
terns of /a/, /u/, and /i/ sounds. Building on our earlier research
utilizing the Saarbruecken Voice Database to explore the use
of CNNs pathological voices [1], this study incorporates new
models - DenseNet, EfficientNet, RegNet, and DeiT - to extend
our previous analysis. The process involves converting voice
recordings into frequency domain representations using spec-
trograms bolstered by diverse audio augmentation techniques
to expand the dataset. Models were evaluated through various
configurations, particularly with respect to vowel selection
and augmentation strategies, employing the F1-score as the
main metric of performance. Furthermore, the study uses
XAI methods to pinpoint critical features in the spectrograms
that distinguish healthy from pathological voice samples. Our
approach provides a comprehensive methodology for disease
detection and can offer clinicians improved insights into the
acoustic features associated with voice disorders, thereby
facilitating a better understanding and aiding the diagnostic
process.

This paper is organized as follows: Section II discusses
prior research on voice analysis, spectrogram generation, deep
learning models, XAI, and pathological voice classification.
Section III outlines the data preparation steps, model evalua-
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tion processes, and experimental outcomes. Lastly, Section IV
recaps the main findings and contributions of this study.

II. RELATED WORKS

Voice analysis methods are typically grouped into three
main categories: static analysis, time-series analysis, and
signal-to-image conversion [13]–[15]. Static analysis focuses
on extracting distinctive features from voice recordings, such
as pitch, loudness, jitter, and shimmer [16]. Time-series tech-
niques consider the voice as a series of data points, using Long
Short-Term Memory (LSTM) models to detect time-related
patterns and variations [17], [18]. The utilisation of image-
based techniques allows for the application of methodologies
such as CNNs or Vision Transformers (ViTs) trained with
spectrograms to recognize unique patterns in this frequency
representation of the signal [19], [20].

Our study focuses on the latter method, where spectro-
grams are utilized to capture the specific details regarding
the frequency and temporal aspects of voice signals. These
spectrograms afford a thorough signal representation by de-
picting energy distribution across time and frequencies, mak-
ing them ideal for CNN/ViT evaluation [21]. Other methods
compared to spectrograms include the short-time Fourier trans-
form (STFT) using both linear and Mel scales, the constant-
Q transform (CQT), and the continuous wavelet transform
(CWT). Each method provides a distinct insight into the
signal’s time-frequency features. For example, CWT excels at
capturing fine temporal details with different resolutions [22],
while CQT offers a logarithmic frequency scale, better fitting
human auditory perception [23]. Nonetheless, spectrograms
continue to be widely favored due to their simple graphical
depiction and compatibility with conventional image process-
ing techniques, thus serving as an excellent choice for deep
learning tasks in voice analysis.

CNNs [24] have played a pivotal role in the advancement
of image recognition tasks, with significant contributions from
networks such as VGG [25], ResNet [26], and more recently,
EfficientNet [27]. These architectures have demonstrated re-
markable performance, reaching notable milestones in the
field and are providing a robust foundation for the analysis
of complex features within voice sample spectrograms. They
enable the precise extraction of time-frequency representations
and effectively support the classification of various speech
characteristics.

Recently, transformer-based models have emerged, enhanc-
ing the ability to process sequential data such as speech.
Originally developed for natural language processing tasks,
transformers excel at capturing complex patterns but often
require more data to be trained effectively compared to CNNs
[28]. Models like the Vision Transformer (ViT) [29] and the
Spectrogram Transformer [30] achieve strong performance in
benchmark spectrogram analyses by utilizing self-attention
mechanisms. These results position transformers as a powerful
complementary or alternative solution to traditional CNN-
based methods in speech analysis.

By utilizing straightforward voice recordings, particularly
vowel sounds, our methodology is grounded in the observation

that specific illnesses cause a noteworthy shift in vocal char-
acteristics , which may be observed in vowel pronunciation.
The utilisation of the Saarbruecken Voice Database [31], which
spans a diverse set of voice disorders, illustrates the capacity
of voice recordings to discern and categorise pathological
conditions.

A number of research teams have conducted studies in-
vestigating the potential of CNNs for the classification of
pathological voice recordings, frequently utilising the Saar-
bruecken Voice Database as a benchmark. For example, the
authors [32] leveraged deep learning by modifying the VGG
architecture, specifically targeting organic dysphonia disor-
ders. Their method consisted of training ensemble models on
diverse vowel subsets proved an effective approach, with an
82% accuracy rate in identifying pathological speech. This
highlights the efficacy of employing model combinations and
transfer learning to address the limitations of restricted dataset
sizes in classification of disordered speech.

In another study, a group of researchers explored a new
algorithm, OSELM, to distinguish and categorise the various
types of voice disorders [33]. The conjunction of vowel sounds
and an uninterrupted flow of speech spoken at various pitches
achieved an accuracy rate exceeding 87% across multiple met-
rics, indicating the potential of the algorithm for developing
clinically applicable software that can be used in real time.

Similarly, the work presented in [34] introduced CS-PVC, a
system designed to classify disordered voices. Mel-frequency
cepstral coefficients (MFCCs) were used as features, which
were fed into a DCA-ResNet architecture that included atten-
tion modules to emphasize relevant features. This resulted in
an accuracy rate of 81.6% in the Saarbruecken Voice Database.

The highest accuracy of 82.69% was achieved by another
work [35] using a CNN classifier with linear prediction
cepstrum coefficients (LPCCs) features for the vowel in male
voice samples. LPCCs were extracted from 40-ms windows
with a 20-ms frame shift, providing a detailed representation
of the vocal tract characteristics. This proved crucial for the
differentiation between pathological and healthy voices.

It is noteworthy that the prior mentioned research, as well as
ours, employ a variety of voice sample subsets for the training
and assessment of their voice pathology classification models.

CNNs leveraged in the detection of diseases through voice
analysis facilitate the use of XAI techniques [36]. Techniques
such as Grad-CAM [37], Score-CAM [38], and Ablation-
CAM [39] offer visual clarity on how CNN models arrive
at decisions by emphasizing the most pertinent areas in
spectrograms. Grad-CAM employs gradient information to
create heatmaps indicating the most significant regions, while
Score-CAM enhances this by weighting each activation map
based on actual output scores. Ablation-CAM, on the other
hand, systematically removes input components to observe
their effects on outcomes. These approaches offer a means to
comprehend the reasoning behind model predictions, aiding
in the interpretation and verification of automated analyses,
which in turn supports better-informed clinical decisions.
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III. EXPERIMENTS

The Saarbruecken Voice Database is a well-regarded re-
source for scholars specializing in speech analysis [31]. This
research investigates audio signal from recorded articulation
of the vowels /a/, /i/, and /u/, gathered from both individuals
who do not have speech disorders and those who have been
diagnosed with speech impairments.

The purpose of this study is to differentiate between samples
from individuals in good health and those with different
medical conditions, comprising 2031 recordings from healthy
subjects and 2289 from those with voice disorders evenly
spread across the three vowels. The dataset covers a spectrum
of disorders [40], such as Dysphonia, Functional Dysphonia,
Hyperfunctional Dysphonia, Laryngitis, and Recurrent Nerve
Paralysis. Our methodology involves several stages, including
data preparation, augmentation, and model evaluation.

1) Data Preparation: The study examined whether the
generation of spectrograms through the application of signal
slicing with 400 ms windows and a 100 ms stride could
facilitate improved model performance in comparison with the
resizing of the frequency representation to 224x224 pixels.
This contrasts with the approaches used in other studies. The
hypothesis suggests that when mel-spectrograms of differing
durations are resized to a common size, there is a loss of
information. The mel-spectrograms were generated using these
parameters: 512 samples separated successive frames, and
each window contained a specific number of 2048 samples,
and the number of mel filter banks was 128. These mel-
spectrograms are illustrated in Figure 1.

Fig. 1. The figure demonstrates a comparison between a spectrogram
of a person without speech impairment (a) with that of a person with
Rekurrensparese, in the dataset (b).

Furthermore, mel-spectrogram data augmentation tech-
niques [41] have been investigated, encompassing time mask-
ing, frequency masking, a combination of these methods, and
audio augmentation through noise - see Figure 2.

2) Model Evaluation: The training of each model was
carried out using the Adam optimizer, incorporating various
data enhancement techniques, including a baseline without
augmentation. A one-fold stratified cross-validation approach
was employed, with a 50% split for training and testing.
Three of the configurations entailed training discrete models
on individual vowels, whereas the fourth combined samples
of /a/, /u/, and /i/ into a unified set. In the fifth approach,
all available vowel samples for each subject (up to three)
were combined into a single three-channel unit, creating an
approach called the ”multichannel” approach. Early stopping
was used to prevent overfitting. Models trained with segmented

Fig. 2. The figure illustrates the initial spectrogram (a) and its alterations
via frequency masking (b), time masking (c), and the application of both
techniques together (d).

signals (slicing) rather than continuous signals were evaluated
with noise-augmented and non-augmented audio data.

We investigated seven models: VGG-19 [25], ResNet-18,
ResNet-101 [26], DenseNet-121 [42], EfficientNet-B2 [27],
RegNet-X32GF [43] and DeiT [44].

3) Results: The best models obtained over the course of
the experiments are presented in Table I. Notably, DenseNet
achieved an F1 score of 0.74 for Multichannel and Slicing in
both scenarios: without augmentation and with added noise.
For most of the models, the highest scores were achieved
without augmentation. The use of augmentation was not
statistically significant for any specific model or across all
results combined (p-value=0.38). Results regarding the use of
augmentation in terms of the F1 score are presented in Figure
3.

Fig. 3. F1 scores of specific models and augmentations

Dividing signal into windows corresponded to a significant
loss of efficiency in DenseNet, EfficientNet, DeiT, and the
results of all models combined. Augmentations, on the other
hand, did not cause the results to change significantly in any
model.
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TABLE I
BEST RESULTS FOR EACH MODEL AND AUGMENTATION TYPE

Model Slicing Augmentation Vowels F1

V
G

G

No No /a/ /u/ /i/ 0.73
No Add Noise /a/ 0.72
Yes Pad Zeros /a/ 0.72
No Add Noise multichannel 0.72
Yes Pad Zeros multichannel 0.72

R
es

N
et

-1
8 No Frequency Masking /a/ 0.72

Yes Pad Zeros /a/ 0.72
No Frequency Masking /a/ /u/ /i/ 0.72
No Frequency Masking multichannel 0.72
Yes Add Noise And Pad /a/ 0.71

R
es

N
et

-1
01 No Time Masking /u/ 0.71

No Time Masking /a/ 0.69
No Frequency Masking /a/ 0.69
Yes Add Noise And Pad /i/ 0.69
No Combined Masking /i/ 0.69

D
en

se
N

et

No No multichannel 0.74
No Add Noise multichannel 0.74
No Combined Masking /a/ 0.73
No Time Masking /i/ 0.73
No No /i/ 0.72

E
ffi

ci
en

tN
et No No /a/ 0.73

No Frequency Masking /a/ 0.71
No Time Masking /a/ 0.71
No No multichannel 0.70
No Combined Masking /a/ 0.70

R
eg

N
et

No Time Masking /a/ 0.72
No Frequency Masking /a/ 0.71
No No /a/ 0.71
No Combined Masking /a/ 0.71
No Frequency Masking /u/ 0.71

D
ei

T

No Add Noise multichannel 0.70
No Frequency Masking /a/ /u/ /i/ 0.70
No Time Masking /a/ /u/ /i/ 0.70
No No multichannel 0.69
No Combined Masking /a/ 0.69

The use of specific vowels or a combination of them signifi-
cantly influenced the performance of VGG, DeiT, ResNet-101,
and RegNet. Table II shows which vowel or group of vowels
(Superior vowel) outperformed (Inferior vowel) with statistical
significances as well as used statistical tests and calculated p-
values.

The use of vowels combined into a multichannel signal
resulted in statistically worse performance on ResNet-101.
Across all other models and results combined, the difference
was not statistically significant.

Results of the model, both in terms of their F1 score and
statistical significance, are presented in Figures 4 and Table 5.

The Grad-CAM, Score-CAM, and Ablation-CAM tech-
niques were applied to highlight the distinctions between
normal and pathological states in mel spectrograms. Unlike the
approach in [45], which showed these methods on a limited set
of samples, we opted to compute averages from 50 randomly
selected samples (Figures 6 and 7). These heatmaps visualize
the areas of the input image or feature map that the specific
model focuses on most while making predictions; the red areas
indicate high importance, while the blue areas signify lower
importance. The graphical depiction of the findings shows that
the model weights are more prominently activated in the case
of subjects with illnesses. Pathological samples demonstrate
greater variability and intensity in color, both in multi-channel
and single-channel data, highlighting the regions of the image

Fig. 4. F1 scores of specific models and augmentations

TABLE II
SIGNIFICANT DIFFERENCES BETWEEN VOWELS DIVIDED TO MODELS

Model Superior
Vowel

Inferior Vowel p-value test

VGG

/a/ /u/ /i/ /i/ 0.014 t-test
/a/ /u/ /i/ /u/ 0.009 t-test
/a/ /i/ 0.039 Wilcoxon
/a/ /u/ 0.023 Wilcoxon
multichannel /u/ 0.040 Wilcoxon

ResNet-101
/a/ multichannel 0.008 Wilcoxon
/a/ /u/ /i/ multichannel 0.022 Wilcoxon
/u/ multichannel 0.044 t-test

RegNet

/a/ /i/ 0.001 t-test
/a/ /a/ /u/ /i/ 0.005 t-test
multichannel /i/ 0.006 t-test
multichannel /a/ /u/ /i/ 0.041 t-test
/u/ /i/ 0.001 t-test

DeiT

/a/ /u/ /i/ /i/ 0.019 t-test
/a/ /u/ /i/ multichannel 0.012 t-test
/a/ /u/ /i/ /u/ 0.021 t-test
/a/ /u/ /i/ /a/ 0.008 Wilcoxon
/i/ /u/ 0.042 t-test
/i/ /a/ 0.013 Wilcoxon
multichannel /a/ 0.008 Wilcoxon
/u/ /a/ 0.039 Wilcoxon

that the model identified as critical for diagnosing health
issues. Conversely, healthy subjects present a more consistent
and subdued color pattern, indicating fewer problematic areas.

IV. SUMMARY

This research project examined the potential of deep learn-
ing architectures for diagnosing speech disorders based on
vowel recordings. The study employed spectrograms from the
Saarbruecken Voice Database, with a particular focus on the
analysis of vowels /a/, /u/, and /i/. A number of CNN models
were trained on the spectrograms, including VGG, ResNet-
18, ResNet-101, DenseNet, EfficientNet, RegNet, and DeiT.
The objective was to classify pathological and healthy voice
recordings. Among the models tested, DenseNet demonstrated
the highest performance, with an F1-score of 0.74, both
when evaluated with multi-channel data and when noise was
introduced to the audio samples.
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Fig. 5. Significant differences between models

Fig. 6. Comparison of Ablation Cam results of /a/ vowel across different
models.

Despite the success of DenseNet, statistical analysis re-
vealed that the selection of vowels had a significant influence
on the performance of the model in certain cases. To illus-

Fig. 7. Comparison of DenseNet results of /i/ vowel across different XAI
visualization techniques.

trate, the VGG model attained an F1-score of 0.73 when all
vowel sounds were combined (/a/, /u/, /i/) but statistical tests
(Wilcoxon and t-tests) demonstrated that vowel /i/ exhibited
a significantly inferior performance compared to vowels /a/
and /u/ (p-values < 0.05). Furthermore, ResNet-101, which
demonstrated moderate performance with a maximum F1-
score of 0.71, also indicated that the combination of vowel
sounds into multichannel signals resulted in statistically in-
ferior outcomes compared to the use of single vowels (p <
0.01).

The statistical analysis revealed significant discrepancies
between the models in their performance with specific vowel
groups. For instance, the RegNet model demonstrated superior
performance with the vowel /a/, exhibiting an F1-score of
0.72, as compared to the combined vowel set (p = 0.005).
Conversely, the DeiT model exhibited a statistically signif-
icant decline in performance with the combined vowels, as
compared to single vowels /a/ and /u/, when evaluated on the
combined vowel set (p < 0.05).

With regard to data augmentation, techniques such as fre-
quency masking, time masking, and the addition of noise were
employed, yet they did not result in notable enhancements
in model performance. The partitioning of audio signals into
smaller windows for training also failed to enhance model
generalization.
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XAI techniques were employed to provide visual explana-
tions for the model’s predictions. By averaging the specific
XAU results across 50 samples, it was observed that for all
models except EfficientNet, vital information came from lower
frequency bands with a higher or lesser focus on the beginning
and end of the recording. Different XAI visualization tech-
niques provided similar, in terms of frequency and time results,
which differed in intensity. Ablation-CAM is characterized by
the most mild activation, and Score-CAm is the most intense
one.

In conclusion, while DenseNet demonstrated strong per-
formance, the study highlights the importance of refining
vowel selection and signal processing techniques. Statistical
analyses confirmed that certain vowels when used in isolation,
outperform combined vowel sets in specific models.
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