

INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2025, VOL. 71, NO. 3, PP. 1-8

Manuscript received May 16, 2025; revised July 2025. doi: 10.24425/ijet.2025.153627

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,

https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

Abstract—Correlation analysis is a frequently used tool in signal

detection and classification tasks. This paper presents the design

and FPGA implementations of a hardware module for calculating

the Pearson correlation coefficient. This module is designed for use

in signal template matching, where a measurement signal is

correlated with a template. It has been described in Verilog and

implemented on Intel Cyclone V FPGA. The module consists of two

main parts, which are: a correlation filter and normalization

modules. Correlation filters performing the calculation in the time

domain and in the frequency domain are described. The project

has been verified in simulation using ModelSim and checked on

hardware. As a result of this work, hardware IP cores are

developed enabling parametrization and programming in data

word-lengths, filter size, calculation speed, FFT/IFFT size, length,

and number of processing templates. Developed resources are

intended to be used in FPGA-based hardware, e.g. DAQ systems,

working with sampling frequencies from kHz to above 130 MHz.

Keywords—correlation; hardware algorithms; FPGA;

embedded systems; time series analysis; pulse recognition

I. INTRODUCTION

ETECTION of signals with specific features in a stream of

samples is a common issue in many scientific and

industrial applications. Similarity degree between signals can be

estimated using cross-correlation function. Correlation methods

were proposed for signal recognition and detection,

measurements of signal delays, physics experiments [5] - [12].

Cross-correlation measure allows detection of signals in noisy

channels. This work considers the normalized version of cross-

correlation calculated according to the Pearson formula [1, 3].

The time dependent Pearson coefficient can be assumed as a

measure of linear similarity strength between two set of

samples. Values of this coefficient are within the range

{-1,1}. The range does not depend on the correlated signals’

sizes. The closer the coefficient value is to 1, the greater the

correlation. A negative -1 value means that the correlation is

linear perfect too but the increase of one signal value is

correlated to the decrease of the value of other signal and the

vice versa [1, 14].

This paper presents the design and FPGA implementation of

a hardware module for calculation of the Pearson coefficient.

The Pearson coefficient is in this text denoted as NCC. This

module calculates NCCs between the measure signal and

templates in every sliding window taken from input stream.

Two FPGA-based IP cores for NCC calculation are described.

First IP core, denoted as ncc_td, includes a cross-correlation

Krzysztof Mroczek is with Institute of Radioelectronics and Multimedia

Technology (IRTM), Warsaw University of Technology, Poland (e-mail:

krzysztof.mroczek@pw.edu.pl).

filter designed in the time domain. This matched filter calculates

non-normalized cross-correlation defined by the numerator of

the Pearson formula. Next, the filter output data are normalized

to NCC values using a normalization module. Architecture with

matched filter enables achieving low computation latency. The

term latency means the number of clock cycles beginning from

the clock cycle in which a new sample is entered into the IP core

input and ending in the clock cycle in which NCC result for

time-window ending on this new sample is available on the IP

core output. FPGA resource requirements depends on the size

of the correlation filter. To achieve the assumed number of clock

cycles for calculation, the number of multiplication modules can

be selected accordingly. Therefore, resources usage can be

limitation for high-throughput processing.

The second IP core, denoted as ncc_fd, implements cross-

correlation filter in the frequency domain using overlap-save

FFT/IFFT algorithm. The non-normalized correlation data are

then normalized in similar way as in the ncc_td.

This paper is organized as follows. Section II describes the

method applied for implementation of NCC on hardware.

Section III presents the design of the main module of the ncc_td.

Section III.A describes correlation filters developed in this

work. Modules developed for NCC normalization are described

in Section III.B. Implementation results for Intel Cyclone V

FPGA are presented in Section III.C. Section IV describes the

design of the ncc_fd and its implementation results. Section V

reports verification of designed IP cores and discusses achieved

results. Finally, section VI concludes this paper.

II. NCC CALCULATION FOR FPGA IMPLEMENTATION

The Pearson correlation coefficient (NCC) of two data

vectors f and s is defined as [1, 3]:

𝑁𝐶𝐶 =
∑ (𝑓(𝑖) − µ𝑓)(𝑠(𝑖) − µ𝑠)𝑁−1

𝑖=0

√(∑ (𝑓(𝑖) − µ𝑓)2𝑁−1
𝑖=0)(∑ (𝑠(𝑖) − µ𝑠)2𝑁−1

𝑖=0)

 (1)

where N is the vectors size, µf, µs are means of f and s.

One of the main project assumptions is to determine how the

input vectors can vary for subsequent NCC calculations. If no

data sharing between the subsequent vectors is assumed, NCC

computation can be performed by applying an acceleration of

arithmetic operations in (1). [14] describes NCC accelerator for

databases and data center applications. In this project, data from

M = 16, …, 64 input vectors (elements of vectors can be 32, 16

or 8-bit) are entered into the computation module in blocks of

FPGA implementation of normalized

correlation function
Krzysztof Mroczek

D

https://creativecommons.org/licenses/by/4.0/

K. MROCZEK

64 bytes. The computation module consists of the ACC engine

for computing the sum of products, sum of elements and sum of

squares in (1) and the COEFF engine for calculation of NCC

values. The accelerator computes M(M-1)/2 NCC values for

every pair of input vectors. The computation time depends on

the vectors sizes and DMA throughput.

In design described in this paper, it was assumed that f is a

vector taken from input stream, s is a template vector which is

unchanged during processing. These conditions are typical for

measuring of similarity to a pattern in time series of samples.

The transformation of formula (1), applied in IP cores described

in Section III and IV, is as follows. The numerator in (1) is

rewritten as:

𝑁𝑈𝑀(𝑘) = 𝐿(𝑘) − 𝐿𝐶𝑀(𝑘) − 𝐿𝐶(𝑘)

Where:

𝐿(𝑘) = ∑ 𝑓(𝑖 + 𝑘) 𝑠(𝑖) (2)
𝑁−1

𝑖=0

𝐿𝐶𝑀(𝑘) = µ𝑠 ∑ 𝑓(𝑖 + 𝑘) (3)
𝑁−1

𝑖=0

𝐿𝐶(𝑘) = µ𝑓𝑘 ∑ (𝑠(𝑖) − µ𝑠) (4)
𝑁−1

𝑖=0

where k is the position of sliding window in input stream, µfk is

the mean in the k-th position. The denominator in (1) is

calculated using running sum and running sum of squares (5):

𝐷𝐸𝑁(𝑘) = √𝑊(𝑘)𝑃𝑆 (5)

𝑊(𝑘) = ∑ (𝑓(𝑘 + 𝑖) − µ𝑓𝑘)
2

 =
𝑁−1

𝑖=0

−1

𝑁
(∑ 𝑓(𝑘 + 𝑖)

𝑁−1

𝑖=0
)

2

+ ∑ 𝑓2(𝑘 + 𝑖)
𝑁−1

𝑖=0
 (6)

where PS is the pre-calculated sum of squares for template in

(1).

L(k) is the equation describing correlation filter, known as

matched filter. The computational cost is N multiplications and

N - 1 additions per one result. To calculate the running sum and

the running sum of squares in (6), four additions are required.

Calculation of W(k) requires five additions and three

multiplications per one signal window. LC(k) can be assumed

equals to 0 if µs is calculated without significant rounding errors,

caused by division by N.

In this work, several configurations of the NCC hardware

module have been developed. The following features can be

configured:

- choosing of IP-core architecture based on correlation filter,

- template size N: constant or programmed in run-time,

- word-widths of samples and templates,

- number of templates ns >= 1; NCC modules enable calculation

of correlation coefficients for selected numbers of templates,

- balance throughput vs. resource usage,

- preloaded or programmed template data.

I developed the described hardware components in Verilog

(with some SystemVerilog extensions). Verilog coding for

FPGA implementation provides full flexibility in description of

a structure of a design. FPGA CAD programs like Quartus

Prime, Vivado include tools for automatic HDL generation of

IP instances. Verilog constructs `define, parameter,

localparam, generate enable code parametrization.

Parametrization enables setting of design parameters in compile

time, including: word-widths, latencies, number of processing

elements, components instantiations, and others.

III. THE NCC_TD DESIGN

Architecture of the main module of the ncc_td core, denoted

as ncctop, is depicted in Fig. 1. The ncctop performs

calculations according to formulas (2), (3), (5), (6) in pipeline

architecture. FIR correlation filter is used to calculate L(k).

Samples read from an input buffer are entered into the filter

input (smpl_in). A new sample can be entered as valid

(smpl_valid = 1) when ready signal (smpl_rdy) is set active. The

time period between adjacent valid strobes must not be less than

the filter calculation time.

Two architectures of correlation filter have been developed,

described below:

NCC_FIP

The instance of Intel FIR II IP core is used for L(k)

calculations. Template data can be loaded in run-time or pre-

loaded. Filter parameters are configured in compile time, what

includes: filter size (N), number of processed templates, number

of clock cycles per calculation of L(k) (St).

NCC_MEM

This is the programmable filter described in Section III.A.

Templates data, templates size (N), number of clock cycles per

calculation of L(k) (St), and number of processed templates (ns)

are programmed in run-time.

Fig. 1. Block diagram of the ncctop module

Correlation filters support integer and fixed-point formats for

samples and coefficients. Every new sample from smpl_in input

is also entered into the input of the W(k) module. If NCC_MEM

architecture has been selected, the sample delayed by N sample

periods (smpl_N) can be used for calculation of running sums,

thus FPGA memory can be saved. The W(k) module calculates

(6) in integer pipeline (Fig. 4). Sum of samples in every N-point

window (sum(k)) is passed to the LCM(k) module for

calculation of (3). Correlation results from the filter output

(ccorr), LCM results and W results are written to the memory

buffers in the normalization module. These buffers synchronize

input streams. Synchronized streams from buffers outputs are

processed in floating point NCC(k) pipeline. Precalculated sums

of squares (PS) of templates are stored in RAM as floating point

numbers. Next subsections describe components developed for

the ncctop.

A. Correlation filters

Correlation filter calculates cross-correlation (2) between

samples window and ns templates. New sample is entered into

FPGA IMPLEMENTATION OF NORMALIZED CORRELATION FUNCTION 3

Fig. 2. Timing diagram from a simulation of the FIR II correlation filter.

the filter input every St*ns or more clock cycles and produces ns

L(k) values on output. Filters described in this section support

setting the same St value for every template. The NCC_FIP is

the filter implementation based on an instance of the FIR II IP

core from Quartus Prime [17]. Coefficients are values of

templates s(i) in U2 code. Input and output interfaces of the filter

are based on the Avalon-ST interface. Filter coefficients can be

reloaded in run-time using separate interface. FIR II IP core

optimizes hardware utilization by applying time-division

multiplexing. The time-division multiplexing ratio TDM is

defined as TDM = fclk / fsmp, where fclk is clock rate, fsmp is the

sample rate of input channels (InputChannelNum).

Filter size N, TDM, number of filter banks and others

parameters are configured using parameter editor. For example,

if fclk = fsmp = 200 MHz and InputChannelNum = 1, then the filter

will process single stream of data. Filter computational

throughput is 1 result per 1 clock cycle. Filter configuration fclk

= 200 MHz, fsmp = 50 MHz, InputChannelNum = 4 and four

coefficient banks can be used for calculation of cross-

correlation in single data stream with four templates. Figure 2

shows timing diagram for this configuration and 8-bit samples.

Samples are entered into ast_sink_data[7:0] input every 4 clock

cycles, beginning from the cycle when ast_sink_sop is set to 1.

Coefficient banks with templates data are switched in sequence

0, 1, 2, 3 by setting ast_sink_data[9:8] input. Correlation results

are available on ast_source_data output in groups of four

values, one value for each template. For this example, the

latency is 15 clock cycles.

The NCC_MEM (Fig. 3) is a programmable filter based on

FPGA memory blocks. This filter supports larger values of

TDM and larger values of filter windows. It consists of CC_PE

processing elements (PE), each of them embeds the memory for

input samples (IMEM), the memory for template samples

(CMEM) and the multiplication module. The NCC_MEM is

parametrized in word and address lengths, CC_PE, selection

between RAM-based or register-based memories, selection

between single or dual port RAM modules, maximum number

of templates 1 – 256 (CC_NSIG), maximum value of St and

component latencies. N, ns and St are programmable by writing

to control registers located in external interface module. N can

be set up to 65536, ns = 1,…, 128, St = 1, …, ceil(N / CC_PE).

Cross-correlation is calculated with templates of size CC_NPE

* St samples. If template size is not integer multiple of CC_NPE,

then template should be extended by zero padding. The filter

throughput is St clock cycles per template, St*ns clock cycles per

input sample. Before starting a stream processing, registers and

memories are reset. Template samples are written to template

memories. After initiation, input samples are written to the

IMEM0 every St*ns or more clock cycles. In Fig. 3.a), the

architecture with single port memories is depicted. RAMs are

implemented by using the altsyncram LPM. RAM output is

unregistered. Read from an address being simultaneously

written provides new data written. Samples read from IMEM

block are written to the next block and entered into the first

inputs of multipliers. Template samples read from CMEM are

entered into the second inputs of multipliers. Multiplication

results are summed in parallel adder.

Fig. 3. Architectures of the NCC_MEM filter, CC_PE = 3. a) with single port

memories; b) with dual-port IMEMs.

Output stage consists of CC_NSIG accumulators, each of them

for one template. Control unit is built using simple counters. The

counter generating address for input memories is set to 0 when

St = 1. For St > 1, the IMEM address changes every clock cycle

in sequence {0,1,…,St-1},{St-1,0,1,…,St-2}, {St-2,St-

1,0,1,…,St-3} ... Every sequence in the curly bracket is repeated

ns times. CMEM address is changing every clock cycle in

sequence {0,1,…,St*ns-1,0,1,…}. For this data flow, each of PE

multiplies St adjacent samples by corresponding to them

template samples. In this architecture, there are direct

unregistered RAM to RAM connections. These connections

may have influence on clock frequency. Fig. 3b) shows

architecture containing dual-port RAMs with registered RAM

outputs. In this case, the altsyncram is configured as RAM:2-

K. MROCZEK

port with single clock with registers on input and output.

Separate ports are used to write and read. Data read from a RAM

block is latched in register block (R0 – R2) before writing to

then next RAM block. Register block embeds single register for

storage data from output of the previous memory block if St > 1

or from output of previous register block if St = 1. Write address

is changing in sequence {0, 1,…, St-1, 0, 1, ...}. Read address is

changing every clock cycle in sequence {0, St-1, St-2,…,1}, {1,

0, St-1, …, 2} ... Every sequence in the curly bracket is repeated

ns times. Sample frequency can have any value not larger than

fclk/(St*ns).

Multiplication and addition are configured for U2 integer data.

Word-length of filter results is set to CC_COEFF_N +

CC_IN_N + log2(filter_size), where CC_COEFF_N is template

bit-width, CC_IN_N is input bit-width, filter_size is the size of

filter window. For multiplication, instances of LPM_MULT IP

with pipeline are embed, additions are described using Verilog

+ operator. Reduction of word-length is supported by setting

two scaling constants. The one constant determines number of

LSB bits discarded from multiplication result, the second

constant determines number of LSB bits discarded from filter

result.

B. The normalization modules

Integer pipeline for the W(k) calculation is shown in Fig. 4. The

running sum and the running sum of squares in every N-sample

window are calculated in integer accumulators. Accumulators

calculate sum(a) = sum(a - 1) + f(a) – f(a - N) and sum2(a) =

sum2(a - 1) + f2(a) – f2(a - N).

Fig. 4. Architecture of the W(k) module.

Instances of the LPM_MULT library module are applied for

multiplications, sum2/N is implemented as fixed point

multiplication by scaled value of 1/N. Number of bits in 1/N

mantissa, number of fractional bits in W(k), multipliers

configurations (pipeline depth, DSP/LUT) are configurable. N-

delay memory delays incoming samples by N sampling periods.

Delayed signal from the output is used as an outcoming sample

f(i - N). The N-delay memory is optional and should be included

for the NCC_FIP. For the NCC_MEM, the f(i - N) sample can

be selected from the sampl_N output of the correlation filter.

Architecture from Fig, 4 can be straightforwardly extended to

support processing of multiple templates which sizes can differ.

Two extensions should be made. The first is adding two-stage

delay memory instead of the N-delay and the select. The first

stage can contain a memory buffer or select the smpl_N to fetch

the sample f(i - Nmin), where Nmin is the minimum template size

from processed group. The second stage will contain additional

ns - 1 delay buffers. Each of them adds the delay equals to Ndt =

Nt - Nmin, Nt is the size of t-th template. Consequently, the last

sample from the window (f(i - Nt)) for currently processed

template can be selected from the output of an appropriate delay

branch. The second extension is adding two register banks (or

two accumulator banks) instead of two single registers in

accumulators. Each bank contains a register storing results for

every Nt window. Finally, selector logic chooses sum and sum2

from output of an appropriate register.

LCM module consists of 32-bit floating point multiplier.

Template means, prior written to RAM, are multiplied by the

running sums. The normalization module (Fig. 5) includes 32-

bit floating point instances: two multipliers, one subtractor, one

divider and one square root. The arithmetic modules are

configured in the 32-bit IEEE-754 standard (FP32). Square root

can be also substituted by look-up table after input conversion

to the range of -1 ,.., 1. Verilog codes of floating point modules

were generated using IP Catalog tool from Quartus. The

ALTERA_FP_FUNCTIONS library was chosen to generate

arithmetic and format conversion instances. IP generator

enables customization for FP32, double precision or custom

precision formats. The latency of generated instance depends on

data formats and target clock frequency. Target clock frequency

was set to 200 MHz.

L(k) data are written to the FIFO synchronization buffer in

the BUF1 when its valid signal (L_valid) is set active, LCM(k)

data are written to the second FIFO in BUF1 when LCM_valid

is set active. L and LCM data are synchronously read from

FIFOs, NUM2(k) = (L(k) - LCM(k))2 is calculated and written

to the FIFO in the BUF2. W(k) data after conversion to FP32

are multiplied by PS(k) for every template in the group. Next,

the denominator data are written to the FIFO in the BUF2.

Control logic generates signals for BUF2 writing, address for

PS RAM and NCC_valid. Numerator and denominator data are

synchronously read from BUF2, next NCC(k) =

sqrt(Numerator2(k) / Denominator(k)) is calculated for every

template.

Fig. 5. Structure of the normalization module

C. Implementation results

Tables I and II show implementation results of the ncctop for

Cyclone V 5CGTFD9D5F27C7 FPGA. Intel Quartus Prime

Lite was used for synthesis, implementation and timing

analysis. L(k) was calculated with full precision, number of

mantissa bits in W(k) module was set to 18. PE is the number of

processing elements in the filter, Nmax is the maximum value of

N, N has the same value for every template, Ns is the maximum

number of templates.

The advantages of the NCC_FIP are lower ALM and memory

usage and higher clock frequency. Increasing of TDM slightly

increases ALMs allocation. The NCC_MEM enables

programming of N and ns but requires sufficient amount of

FPGA memory. M10K memory blocks in Cyclone V FPGA can

be configured for several depth - width values, among them are:

FPGA IMPLEMENTATION OF NORMALIZED CORRELATION FUNCTION 5

1k x 8 bit, 512 x 16 bit, 256 x 32 bit [18]. When depth of RAM

blocks is lower than the technological value, the M10K

allocation can increase. Memory optimizations for save FPGA

memory blocks, e.g., merging blocks, can be further

optimizations of this architecture.

Calculation throughput for single template from the group is

1 NCC per ceil(N/PE) * ns clock cycles for NCC_MEM; 1 NCC

per TDM clock cycles for NCC_FIP. Calculation latency is less

than 70 clock cycles. Table II summarizes clock performance

for configurations from Table I. The fclkmin is the clock frequency

of slow chip corner, the fclkmax is the clock frequency of fast chip

corner [19]. Results of NCC_MEM Single-port RAM are

estimated for the same configurations as for the NCC_MEM

Dual-port RAM.
TABLE I

EXPERIMENTAL RESULTS OF NCCTOP. 8-BIT SAMPLES,

8-BIT TEMPLATES.

PARAMETERS AREA

NCC_FIP

N TDM ns ALMs Registers M10K
blocks

DSP

64 1 1 2124 (2%) 5169 16 42

4 4 3354 (3%) 6288 16 42

128 1 1 2423 (2%) 5897 16 74

4 4 4828 (4%) 8138 16 74

512

1 1 10202 (9%) 23200 16 222

4 4 14414 (13%) 20039 16 266

1024 1 1 43190 (38%) 88213 17 222

4 4 40158 (36%) 69384 17 342

NCC_MEM

PE Nmax Ns ALMs Registers M10K

blocks

DSP

Dual-port RAM (Fig. 3 b))

64 8192 4 3782 (3%) 9403 92 74

32 3866 (4%) 9430 284 74

128 16384 4 5688 (5%) 13597 169 138

32 5730 (5%) 13624 553 138

512 8192 32 16598 (15%) 38271 630 342

65536 4 16789 (15%) 38480 630 342

Single-port RAM (Fig. 3 a))

512 65536 4 12859 (11%) 30216 629 342

TABLE II

EXPERIMENTAL RESULTS OF CLOCK PERFORMANCE

Architecture fclkmin [MHz] fclkmax [MHz]

NCC_FIP 160 - 205 260 - 370

NCC_MEM Dual-port RAM 160 - 200 240 - 310

NCC_MEM Single-port RAM 150 - 200 230 - 310

Experiments showed that increasing of the ALM allocation may

lead to decreasing of the maximum value of clock frequency.

The lowest frequency values were reported for the largest

architectures NCC_FIP N = 1024 TDM = 1, NCC_MEM PE =

512.

IV. THE NCC_FD DESIGN BASED ON FFT

The NCC_fd design includes a correlation filter designed in the

frequency domain:

𝑐𝑜𝑟𝑟(𝑘) = ∑ 𝑓(𝑖 + 𝑘)(𝑠(𝑖) − µ𝑠)𝑁−1
𝑖=0 <=>

𝐹𝐹𝑇−1(𝐹𝐹𝑇(𝑓𝑘) ∗ 𝑐𝑜𝑛𝑗(𝐹𝐹𝑇(𝑠 − µ𝑠))) <=> (7)

𝐹𝐹𝑇−1(𝐹𝐹𝑇(𝑓𝑘) ∗ 𝐹𝐹𝑇(𝑠𝑟𝑒𝑣 − µ𝑠))

where

conj is complex conjugate, srev is s in the reverse order.

FFT-based correlation is computed using overlap-save

algorithm [2] applied to stream processing. Stream processing

steps are as follows.

1. Pre-processing. Templates are normalized by subtracting

means, next zeros are padded to the length of FFT. FFT is

calculated for every pre-processed template. FFT coefficients

are rounded to the chosen format. As a result, FFT_Mt, t = 0, …,

ns -1, coefficients are written to memory buffer.

2. Input samples are divided into blocks of the size L_size =

FFT_size - M +1, where M is the length of the longest template

in the set. Last M - 1 samples from previous block are the first

samples in the next block, followed by L_size new samples.

Before the first block, M - 1 zeros are inserted at the beginning.

3. FFT is calculated for the input block (FFTB).

4. Complex multiplication of FFTs:

MULBt = FFTB * conj(FFT_Mt).

5. Inverse FFT: IFFTBt = FFT-1(MULBt). First L_size values of

IFFTBt real component are L(k) data. Remaining M - 1 values of

IFFT are discarded.

If lengths of templates differ, first valid correlation value is

shifted by M - Nt positions, where Nt is the length of t-th

template.

Steps 3 - 5 are repeated for every template.

Fig. 6. Block diagram of the ncc_fd_proc

Block diagram of the main module of the NCC_fd, denoted as

ncc_fd_proc, is shown in Fig. 6. After reset prior to writing input

samples, M - 1 leading zeros are written to the first port of dual-

port DP-RAM. The size of DP-RAM is 2*FFT_size samples.

Input data are read from the second port of the DP-RAM in

blocks of FFT_size samples. Data streams for FFT (L_d,

L_valid) and for W(k) (M_d, M_valid) are formed. Each of

sample blocks is repeated ns times. Next, read counter is

decremented by M - 1 to the address of first sample in next

K. MROCZEK

block. The W buffer consists of one FIFO buffer and one two-

stage delay buffer. The FIFO buffer stores samples for the time

related to FFT to IFFT latency. The delay buffer reads incoming

sample (di), an outcoming (di_N) samples used for calculation

of the W(k). Sizes of templates in the processed group can be

different and they are programmed in run-time. The flow control

ensures proper synchronization between the W(k) stream and

the ifft_real stream. Correlation results after scaling of the IFFT

real data are written to the synchronization buffer in the NCC

normalization module. W(k) data, calculated in a similar way as

is described in IIIB, are written to the second synchronization

buffer. The NCC normalization module includes FP32

multiplication, division, and square root IPs from the

ALTERA_FP_FUNCTIONS library. Finally, the NCC(k)

stream for ns templates is available on the module output.

FFT/IFFT based correlation module (Fig. 7) consists of two

instances of FFT IP from the Quartus Prime IP library [16]. Data

flow between modules is based on the Avalon-ST source (src)

and sink (snk) interfaces. To save FPGA ALM resources,

integer FFT has been used. Output bit order for this core

configuration is set to radix-2. Input bit order of FP32 IFFT must

be set to radix-4. Therefore, reorder buffer (RBuffer) between

FFT output and complex multiplier is required to change the

order to radix-4. The complex multiplier is implemented using

the ALTMULT_COMPLEX IP. If FP32 FFT module is used,

the reorder buffer is skipped.

The ncc_fd_proc throughput is L_size NCC results per

FFT_size clock cycles per single template. The latency is

(2+Lreo)*FFT_size + Lfl clock cycles, where

Lreo is 1 if reorder buffer is used, 0 if reorder buffer is skipped,

Lfl is the latency added by other modules in the data path.

Fig. 7. The architecture of the FFT/IFFT module.

Example of a timing diagram from simulation of the

ncc_fd_proc is shown in Fig. 8. In this stimulus, there are four

templates with sizes of 128, 104, 140, and 160 samples, input

data block has 2000 samples, 1024-point FFT is used. Overlap

size is set to M = 159. Input data are divided into three blocks.

The ncc_fd_proc calculates L_size = 865 NCCs in 1024 clock

cycles. Every input block is repeated four times, one block per

one template. As it is shown, the IP core enables connection to

a busy DMA channel using Avalon-ST flow control. This

feature was simulated by randomly setting the ncc_ready input

to 0 during processing of blocks no. 2 and no. 3.

TABLE III

EXPERIMENTAL RESULTS OF NCC_FD_PROC OBTAINED FOR: 8-BIT

SAMPLES, 8-BIT TEMPLATES, INTEGER FFT, INTEGER COMPLEX

MULTIPLICATION, FP32 IFFT. THE FFT_size IS PROGRAMMABLE

FFT/IFFT

length

Ns ALMs Registers M10K

blocks

DSP fclkmin – fclkmax

[MHz]

1024 16 15245 (13%) 29058 146 67 140 - 230

4096 16 18759 (17%) 34861 278 81 135 - 230

16384 16 22534 (20%) 40620 733 96 135 - 220

Preliminary results of ncc_ft_proc implementation are shown in

Table III. Memory allocation and latency can be further reduced

after applying FFT and IFFT with compatible bit orders.

V. DESIGN VERIFICATION AND RESULTS

Described designs were verified in ModelSim simulations

and prototyped on hardware. Reference program (RP) was

written in Matlab to generate files used in testbenches. Matlab

xcorr and corrcoef functions were used for calculation of cross-

correlation and NCC. RP generated synthetic signals as

templates. Templates after multiplying by attenuation factors

were inserted into the input waveform and noise was added.

Cross-correlation and NCC results from RP were compared

sample-by-sample with results from the simulation. Fig. 9

shows an example stimulus. The input signal is a sum of

Fig. 8. Timing diagram from the simulation of the ncc_fd_proc.

FPGA IMPLEMENTATION OF NORMALIZED CORRELATION FUNCTION 7

a slowly changed component, DC, noise and four attenuated

templates. The first template is a sine wave, the second is

a frequency modulated sine wave, the third is a rectangle pulse,

the fourth is a Dirichlet pulse. The length of each of template is

300 samples.

TABLE IV

REPORTED ACCURACY

ΔNCCmax |δNCCmax|[%] |ΔNCC|

NCC_td

-2.0e-06 2.8e-04 2.0e-06

NCC_fd integer FFT, FP32 IFFT

1.3e-04 0.018 2.3e-03

NCC_fd integer FFT, FP32 IFFT, 24-bit IFFT input data

-4.2e-04 0.046 5.6e-02

Fig. 9. Time diagram of an example stimulus (upper picture). Lower pictures

show the Pearson coefficients calculated between this stimulus and four

templates.

Reported accuracy for this stimulus is shown in Table 4. ΔNCCmax

is the maximum absolute error for maximum NCC

values,|δNCCmax| is the maximum relative error in % for

maximum NCC values, |ΔNCC| is the maximum absolute error in

the whole timeseries. Sources of rounding errors in NCC_td are

1/N multiplying and floating point operations. NCC_fd

accuracy has been lower what is related to applying the integer

FFT. Reducing word-length on IFFT inputs to 24-bits by

discarding 14 least significant bits of complex multiplication

results has yielded an accuracy of 0.046 %.

Table V shows the comparison between the proposed

NCC_FIP/NCC_MEM architectures and [5]. Proposed designs

enable implementation of NCC function with small FPGA

resources. Additionally, the NCC_MEM adds programming in

run-time.

NCC_fd configured with 16384-point and 4096-point

FFT/IFFT may provide better throughput for templates with

sizes up to thousands of samples and it can be implemented on

selected FPGA chip. One of the main differences between

NCC_td and NCC_fd is significantly larger latency of NCC_fd.

TABLE V

DESIGNS COMPARISION

FIP1: NCC_FIP, N=64, TDM=1, ns = 1, 8 x 8 bit

FIP2: NCC_FIP, N=64, TDM=1, ns = 1, 12 x 12 bit

MEM1: NCC_MEM, PE=64, Nmax=8192, Ns = 4, 8 x 8 bit

MEM2: NCC_MEM, PE=64, Nmax=8192, Ns = 4, 12 x 12 bit

 [5] PCI FIP1 FIP2 MEM1 MEM2

Template size (N) 64 2,…,64 2,…64 2,…,8192 2,…,8192

Throughput (NCC/clk) 1 1 1 1 - 128 1 - 128

Xilinx Artix-7 LUT 21349 - - - -

Altera Cyclone V ALM - 2124 2339 3782 4751

Registers 21524 5159 5876 9403 11715

Memory blocks 0 16 16 92 98

DSP blocks 120 42 42 74 74

Max. frequency [MHz] 137.8 200 - 310 200 - 310 200 - 300 180 - 300

The architecture of the prototype system is depicted in Fig.

10. Tests were performed using Terasic OVSK board,

containing Cyclone V 5CGTFD9D5F27C7 FPGA. Altera PCIe

Windows x64 driver and TERASIC_PCIE_AVMM.dll were

used as an interface between user software and FPGA hardware,

including write and read DDR memory. Fully functional NCC

module consists of the computation core (the ncctop or the

ncc_fd_proc) and the interface logic with internal registers. The

NCC module has been connected to the PCIe interface. 32-bit

Avalon-MM port av writes and reads to/from internal registers.

128-bit Avalon-ST port avst_in writes input samples from

DDR3 to the module using DMA. Additional DMA channel is

used to write FFT_M data from the DDR3 to the NCC_fd. 128-

bit Avalon-ST port st_out writes calculated NCC stream to

DDR3 using separate DMA channel.

Fig. 10. Hardware for prototyping of the NCC modules

SoPC subsystem ncc.qsys was designed using the Platform

Designer from Quartus. The ncc.qsys contains the V-series

Avalon-MM DMA PCIe and the mSGDMA IP cores [15]. Test

programs were written in C. Results from RP were compared

with NCC values from hardware. Performed tests showed that

the developed NCC modules work correctly.

K. MROCZEK

VI. CONCLUSION

This paper presents the FPGA IP cores designed for

calculation of the Pearson correlation coefficient for signal

template matching. NCC functional modules with cross-

correlation filtering in the time domain and in the frequency

domain followed by NCC normalization were described. In this

work, parametrizable Verilog cores were developed what will

simplify the development of a custom FPGA-based hardware.

Detailed descriptions of the developed modules together with

estimation of FPGA resource usage are presented. NCC_td

enables choosing between resource-optimized FIR IP

architecture and programmable filter. NCC_fd enables higher

throughput for large template sizes up to thousands of samples,

with resource requirements which are dependent on FFT/IFFT

architectures. Further optimizations of the designs will be

targeted to improve performance and add configurations for

multi-channel correlation processor.

REFERENCES

[1] J. L. Rodgers, W. A. Nicewander, “Thirteen Ways to Look at the

Correlation Coefficient”, American statistician (1988), 42, pp. 59–66,
1988, https://doi.org/10.2307/2685263

[2] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, “Numerical
Recipes in C, 2nd Ed.”, Cambridge University Press, 1992.

[3] Correlation coefficients corrcoef, Matlab Help,

https://www.mathworks.com/help/matlab/ref/corrcoef.html

[4] J. P. Lewis, “Fast Normalized Cross-Correlation”, In: Vision Interface, pp.
120–123, 1995

[5] A. Cicuttin, I. R. Morales, M. L. Crespo, S. Carrato, L. G. García, R. S.

Molina, B. Valinoti, J. F. Kamdem, “A Simplified Correlation Index for
Fast Real-Time Pulse Shape Recognition”, Sensors 2022, 22(20), 7697,
https://doi.org/10.3390/s22207697

[6] C.H. Moore, W. Lin, “FPGA Correlator for Applications in Embedded
Smart Devices”, Biosensors 2022, 12(4), 236;

https://doi.org/10.3390/bios12040236

[7] C. La, M. J. Liu, X. F. Li, “The FPGA Implementation of Matched
Correlation Filter”, in Proc. 2011 International Conference on Electronics,

Communications and Control (ICECC),pp. 1114-1117, 2011,
https://doi.org/10.1109/ICECC.2011.6066596

[8] F. J. Iniguez-Lomeli, S. Renaud, J. H. Barron-Zambrano, “A Real Time
FPGA-Based Implementation for Detection and Sorting of Bio-signals,

Neural Computing and Applications 33(22)”, pp. 12121–12140, 2021,
https://doi.org/10.1007/s00521-021-05853-7

[9] S. Adrián-Martínez, M. Ardid, M. Bou-Cabo, I. Felis, C. D. Llorens, J.A.

Martínez-Mora, M. Saldaña, “Acoustic Signal Detection Through the
Cross-Correlation Method in Experiments with Different Signal to Noise

Ratio and Reverberation Conditions”. In: Garcia Pineda, M., Lloret, J.,

Papavassiliou, S., Ruehrup, S., Westphall, C. (eds) Ad-hoc Networks and
Wireless. ADHOC-NOW 2014. Lecture Notes in Computer Science(), vol

8629. Springer, Berlin, Heidelberg, pp. 66-79 ,2015.
https://doi.org/10.1007/978-3-662-46338-3_7

[10] D. Lee, S. Lee, S. Oh, D. Park, ”Energy-Efficient FPGA Accelerator with
Fidelity-Controllable Sliding-Region Signal Processing Unit for

Abnormal ECG Diagnosis on IoT Edge Devices”, IEEE Access, Volume
9, pp. 122789-122800, 2021,

https://doi.org/10.1109/ACCESS.2021.3109875

[11] Y. Huang, H. Bao, X. Qi, “Seismic Random Noise Attenuation Method

Based on Variational Mode Decomposition and Correlation Coefficients”,
Electronics 2018, 7(11), 280, https://doi.org/10.3390/electronics7110280

[12] M. Faisal, R. T. Schiffer, M. Flaska, S. A. Pozzi, D. D. Wentzloff, “A

correlation-based pulse detection technique for gamma-ray/neutron
detectors”, Nuclear Instruments and Methods in Physics Research Section

A: Accelerators, Spectrometers, Detectors and Associated Equipment,
Volume 652, Issue 1, pp. 479-482, 2011,

https://doi.org/10.1016/j.nima.2010.10.072

[13] M. Garrido, J. Grajal, M. A. Sanchez, O. Gustafsson, "Pipelined Radix-2k

Feedforward FFT Architectures", IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 21, no. 1, pp. 23-32, Jan. 2013,
https://doi.org/10.1109/TVLSI.2011.2178275

[14] M. Chiosa, T. B. Preußer, M. Blott, G. Alonso, “AMNES: Accelerating
the computation of data correlation using FPGAs”, in Proc. of the VLDB

Endowment, Volume 16, Issue 13, pp. 4174-7187, 2023,
https://doi.org/10.14778/3625054.3625056

[15] K. Mroczek, “SoPC-based DMA for PCI Express DAQ Cards”,

International Journal of Electronics and Telecommunications (IJET), Vol.
67 No. 4, pp. 565-570, 2021, https://doi.org/10.24425/ijet.2021.137847

[16] Intel® Corporation, FFT IP Core User Guide, Intel Quartus Prime Design
Suite, v. 17.1

[17] Intel® Corporation, FIR II IP Core User Guide, Intel Quartus Prime
Design Suite, v. 17.1

[18] Intel® Corporation, Cyclone V Device Handbook, Volume 1: Device
Interfaces and Integration

[19] Intel® Quartus® Prime Standard Edition User Guide Timing Analyzer, v.
18.1

https://doi.org/10.2307/2685263
https://www.mathworks.com/help/matlab/ref/corrcoef.html
https://doi.org/10.3390/s22207697
https://doi.org/10.3390/bios12040236
https://doi.org/10.1109/ICECC.2011.6066596
https://doi.org/10.1007/s00521-021-05853-7
https://doi.org/10.1007/978-3-662-46338-3_7
https://doi.org/10.1109/ACCESS.2021.3109875
https://doi.org/10.3390/electronics7110280
https://doi.org/10.1016/j.nima.2010.10.072
https://doi.org/10.1109/TVLSI.2011.2178275
https://doi.org/10.14778/3625054.3625056
https://doi.org/10.24425/ijet.2021.137847

