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Abstract—Correlation analysis is a frequently used tool in signal 

detection and classification tasks. This paper presents the design 

and FPGA implementations of a hardware module for calculating 

the Pearson correlation coefficient. This module is designed for use 

in signal template matching, where a measurement signal is 

correlated with a template. It has been described in Verilog and 

implemented on Intel Cyclone V FPGA. The module consists of two 

main parts, which are: a correlation filter and normalization 

modules. Correlation filters performing the calculation in the time 

domain and in the frequency domain are described. The project 

has been verified in simulation using ModelSim and checked on 

hardware. As a result of this work, hardware IP cores are 

developed enabling parametrization and programming in data 

word-lengths, filter size, calculation speed, FFT/IFFT size, length, 

and number of processing templates. Developed resources are 

intended to be used in FPGA-based hardware, e.g. DAQ systems, 

working with sampling frequencies from kHz to above 130 MHz. 

 

Keywords—correlation; hardware algorithms; FPGA; 

embedded systems; time series analysis; pulse recognition 

I. INTRODUCTION 

ETECTION of signals with specific features in a stream of 

samples is a common issue in many scientific and 

industrial applications. Similarity degree between signals can be 

estimated using cross-correlation function. Correlation methods 

were proposed for signal recognition and detection, 

measurements of signal delays,  physics experiments [5] - [12]. 

Cross-correlation measure allows detection of signals in noisy 

channels. This work considers the normalized version of cross-

correlation calculated according to the Pearson formula [1, 3]. 

The time dependent Pearson coefficient can be assumed as a 

measure of linear similarity strength between two set of 

samples. Values of this coefficient are within the range  

{-1,1}. The range does not depend on the correlated signals’ 

sizes. The closer the coefficient value is to 1, the greater the 

correlation. A negative -1 value means that the correlation is 

linear perfect too but the increase of one signal value is 

correlated to the decrease of the value of other signal and the 

vice versa [1, 14].  

This paper presents the design and FPGA implementation of 

a hardware module for calculation of the Pearson coefficient. 

The Pearson coefficient is in this text denoted as NCC. This 

module calculates NCCs between the measure signal and 

templates in every sliding window taken from input stream. 

Two FPGA-based IP cores for NCC calculation are described. 

First IP core, denoted as ncc_td, includes a cross-correlation 
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filter designed in the time domain. This matched filter calculates 

non-normalized cross-correlation defined by the numerator of 

the Pearson formula. Next, the filter output data are normalized 

to NCC values using a normalization module. Architecture with 

matched filter enables achieving low computation latency. The 

term latency means the number of clock cycles beginning from 

the clock cycle in which a new sample is entered into the IP core 

input and ending in the clock cycle in which NCC result for 

time-window ending on this new sample is available on the IP 

core output. FPGA resource requirements depends on the size 

of the correlation filter. To achieve the assumed number of clock 

cycles for calculation, the number of multiplication modules can 

be selected accordingly. Therefore, resources usage can be 

limitation for high-throughput processing.  

The second IP core, denoted as ncc_fd, implements cross-

correlation filter in the frequency domain using overlap-save 

FFT/IFFT algorithm. The non-normalized correlation data are 

then normalized in similar way as in the ncc_td.  

This paper is organized as follows. Section II describes the 

method applied for implementation of NCC on hardware. 

Section III presents the design of the main module of the ncc_td. 

Section III.A describes correlation filters developed in this 

work. Modules developed for NCC normalization are described 

in Section III.B. Implementation results for Intel Cyclone V 

FPGA are presented in Section III.C. Section IV describes the 

design of the ncc_fd and its implementation results. Section V 

reports verification of designed IP cores and discusses achieved 

results. Finally, section VI concludes this paper.  

II. NCC CALCULATION FOR FPGA IMPLEMENTATION 

The Pearson correlation coefficient (NCC) of two data 

vectors f and s is defined as [1, 3]: 

𝑁𝐶𝐶 =
∑ (𝑓(𝑖) − µ𝑓)(𝑠(𝑖) − µ𝑠)𝑁−1

𝑖=0

√(∑ (𝑓(𝑖) −  µ𝑓)2𝑁−1
𝑖=0 )(∑ (𝑠(𝑖) − µ𝑠)2𝑁−1

𝑖=0 )

     (1) 

where N is the vectors size, µf, µs are means of f and s.  

One of the main project assumptions is to determine how the 

input vectors can vary for subsequent NCC calculations. If no 

data sharing between the subsequent vectors is assumed, NCC 

computation can be performed by applying an acceleration of 

arithmetic operations in (1). [14] describes NCC accelerator for 

databases and data center applications. In this project, data from 

M = 16, …, 64 input vectors (elements of vectors can be 32, 16 

or 8-bit) are entered into the computation module in blocks of 
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64 bytes. The computation module consists of the ACC engine 

for computing the sum of products, sum of elements and sum of 

squares in (1) and the COEFF engine for calculation of NCC 

values. The accelerator computes M(M-1)/2 NCC values for 

every pair of input vectors. The computation time depends on 

the vectors sizes and DMA throughput.  

In design described in this paper, it was assumed that f is a 

vector taken from input stream, s is a template vector which is 

unchanged during processing. These conditions are typical for 

measuring of similarity to a pattern in time series of samples. 

The transformation of formula (1), applied in IP cores described 

in Section III and IV, is as follows. The numerator in (1) is 

rewritten as:  

𝑁𝑈𝑀(𝑘) = 𝐿(𝑘) − 𝐿𝐶𝑀(𝑘) − 𝐿𝐶(𝑘) 

Where: 

𝐿(𝑘) = ∑ 𝑓(𝑖 + 𝑘) 𝑠(𝑖)                             (2)
𝑁−1

𝑖=0
 

𝐿𝐶𝑀(𝑘) = µ𝑠 ∑ 𝑓(𝑖 + 𝑘)                          (3)
𝑁−1

𝑖=0
 

𝐿𝐶(𝑘) =  µ𝑓𝑘 ∑ (𝑠(𝑖) − µ𝑠)                      (4)       
𝑁−1

𝑖=0
 

where k is the position of sliding window in input stream, µfk is 

the mean in the k-th position. The denominator in (1) is 

calculated using running sum and running sum of squares (5): 

𝐷𝐸𝑁(𝑘) =  √𝑊(𝑘)𝑃𝑆                                         (5) 

𝑊(𝑘) = ∑ (𝑓(𝑘 + 𝑖) − µ𝑓𝑘)
2

   = 
𝑁−1

𝑖=0
 

−1

𝑁
(∑ 𝑓(𝑘 + 𝑖)

𝑁−1

𝑖=0
)

2

+ ∑ 𝑓2(𝑘 + 𝑖)
𝑁−1

𝑖=0
    (6) 

where PS is the pre-calculated sum of squares for template in 

(1). 

L(k) is the equation describing correlation filter, known as 

matched filter. The computational cost is N multiplications and 

N - 1 additions per one result. To calculate the running sum and 

the running sum of squares in (6), four additions are required. 

Calculation of W(k) requires five additions and three 

multiplications per one signal window. LC(k) can be assumed 

equals to 0 if µs is calculated without significant rounding errors, 

caused by division by N.  

In this work, several configurations of the NCC hardware 

module have been developed. The following features can be 

configured: 

- choosing of IP-core architecture based on correlation filter, 

- template size N: constant or programmed in run-time, 

- word-widths of samples and templates, 

- number of templates ns >= 1;  NCC modules enable calculation 

of correlation coefficients for selected numbers of templates, 

- balance throughput vs. resource usage, 

- preloaded or programmed template data. 

I developed the described hardware components in Verilog 

(with some SystemVerilog extensions). Verilog coding for 

FPGA implementation provides full flexibility in description of 

a structure of a design. FPGA CAD programs like Quartus 

Prime, Vivado include tools for automatic HDL generation of 

IP instances. Verilog constructs `define, parameter, 

localparam, generate enable code parametrization. 

Parametrization enables setting of design parameters in compile 

time, including: word-widths, latencies, number of processing 

elements, components instantiations, and others.  

III. THE NCC_TD DESIGN  

Architecture of the main module of the ncc_td core, denoted 

as ncctop, is depicted in Fig. 1. The ncctop performs 

calculations according to formulas (2), (3), (5), (6) in pipeline 

architecture. FIR correlation filter is used to calculate L(k). 

Samples read from an input buffer are entered into the filter 

input (smpl_in). A new sample can be entered as valid 

(smpl_valid = 1) when ready signal (smpl_rdy) is set active. The 

time period between adjacent valid strobes must not be less than 

the filter calculation time.  

Two architectures of correlation filter have been developed, 

described below: 

NCC_FIP 

The instance of Intel FIR II IP core is used for L(k) 

calculations. Template data can be loaded in run-time or pre-

loaded. Filter parameters are configured in compile time, what 

includes: filter size (N), number of processed templates, number 

of clock cycles per calculation of L(k) (St).  

NCC_MEM 

This is the programmable filter described in Section III.A. 

Templates data, templates size (N), number of clock cycles per 

calculation of L(k) (St), and number of processed templates  (ns) 

are programmed in run-time.  

Fig. 1. Block diagram of the ncctop module 
 

Correlation filters support integer and fixed-point formats for 

samples and coefficients. Every new sample from smpl_in input 

is also entered into the input of the W(k) module. If NCC_MEM 

architecture has been selected, the sample delayed by N sample 

periods (smpl_N) can be used for calculation of running sums, 

thus FPGA memory can be saved. The W(k) module calculates 

(6) in integer pipeline (Fig. 4). Sum of samples in every N-point 

window (sum(k)) is passed to the LCM(k) module for 

calculation of (3). Correlation results from the filter output 

(ccorr), LCM results and W results are written to the memory 

buffers in the normalization module. These buffers synchronize 

input streams. Synchronized streams from buffers outputs are 

processed in floating point NCC(k) pipeline. Precalculated sums 

of squares (PS) of templates are stored in RAM as floating point 

numbers. Next subsections describe components developed for 

the ncctop.     

A. Correlation filters 

Correlation filter calculates cross-correlation (2) between 

samples window and ns templates. New sample is entered into 
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Fig. 2.  Timing diagram from a simulation of the FIR II correlation filter.  

 

the filter input every St*ns or more clock cycles and produces ns 

L(k) values on output. Filters described in this section support 

setting the same St value for every template. The NCC_FIP is 

the filter implementation based on an instance of the FIR II IP 

core from Quartus Prime [17]. Coefficients are values of 

templates s(i) in U2 code. Input and output interfaces of the filter 

are based on the Avalon-ST interface. Filter coefficients can be 

reloaded in run-time using separate interface. FIR II IP core 

optimizes hardware utilization by applying time-division 

multiplexing. The time-division multiplexing ratio TDM is 

defined as TDM = fclk / fsmp, where fclk is clock rate, fsmp is the 

sample rate of input channels (InputChannelNum).  

Filter size N, TDM, number of filter banks and others 

parameters are configured using parameter editor. For example, 

if fclk = fsmp = 200 MHz and InputChannelNum = 1, then the filter 

will process single stream of data. Filter computational 

throughput is 1 result per 1 clock cycle. Filter configuration fclk 

= 200 MHz, fsmp = 50 MHz, InputChannelNum = 4 and four 

coefficient banks can be used for calculation of cross-

correlation in single data stream with four templates. Figure 2 

shows timing diagram for this configuration and 8-bit samples. 

Samples are entered into ast_sink_data[7:0] input every 4 clock 

cycles, beginning from the cycle when ast_sink_sop is set to 1. 

Coefficient banks with templates data are switched in sequence 

0, 1, 2, 3 by setting ast_sink_data[9:8] input. Correlation results 

are available on ast_source_data output in groups of four 

values, one value for each template. For this example, the 

latency is 15 clock cycles.  

The NCC_MEM (Fig. 3) is a programmable filter based on 

FPGA memory blocks. This filter supports larger values of 

TDM and larger values of filter windows. It consists of CC_PE 

processing elements (PE), each of them embeds the memory for 

input samples (IMEM), the memory for template samples 

(CMEM) and the multiplication module. The NCC_MEM is 

parametrized in word and address lengths, CC_PE, selection 

between RAM-based or register-based memories, selection 

between single or dual port RAM modules, maximum number 

of templates 1 – 256 (CC_NSIG), maximum value of St and 

component latencies. N, ns and St are programmable by writing 

to control registers located in external interface module. N can 

be set up to 65536, ns = 1,…, 128, St = 1, …, ceil(N / CC_PE). 

Cross-correlation is calculated with templates of size CC_NPE 

* St samples. If template size is not integer multiple of CC_NPE, 

then template should be extended by zero padding. The filter 

throughput is St clock cycles per template, St*ns clock cycles per 

input sample. Before starting a stream processing, registers and 

memories are reset. Template samples are written to template 

memories. After initiation, input samples are written to the 

IMEM0 every St*ns or more clock cycles. In Fig. 3.a), the 

architecture with single port memories is depicted. RAMs are 

implemented by using the altsyncram LPM. RAM output is 

unregistered. Read from an address being simultaneously 

written provides new data written. Samples read from IMEM 

block are written to the next block and entered into the first 

inputs of multipliers. Template samples read from CMEM are 

entered into the second inputs of multipliers. Multiplication 

results are summed in parallel adder. 

Fig. 3. Architectures of the NCC_MEM filter, CC_PE = 3. a) with single port 

memories; b) with dual-port IMEMs. 
 

Output stage consists of CC_NSIG accumulators, each of them 

for one template. Control unit is built using simple counters. The 

counter generating address for input memories is set to 0 when 

St = 1. For St > 1, the IMEM address changes every clock cycle 

in sequence {0,1,…,St-1},{St-1,0,1,…,St-2}, {St-2,St-

1,0,1,…,St-3} ... Every sequence in the curly bracket is repeated 

ns times. CMEM address is changing every clock cycle in 

sequence {0,1,…,St*ns-1,0,1,…}. For this data flow, each of PE 

multiplies St adjacent samples by corresponding to them 

template samples. In this architecture, there are direct 

unregistered RAM to RAM connections. These connections 

may have influence on clock frequency. Fig. 3b) shows 

architecture containing dual-port RAMs with registered RAM 

outputs. In this case, the altsyncram is configured as RAM:2-
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port with single clock with registers on input and output. 

Separate ports are used to write and read. Data read from a RAM 

block is latched in register block (R0 – R2) before writing to 

then next RAM block. Register block embeds single register for 

storage data from output of the previous memory block if St > 1 

or from output of previous register block if St = 1. Write address 

is changing in sequence {0, 1,…, St-1, 0, 1, ...}. Read address is 

changing every clock cycle in sequence {0, St-1, St-2,…,1}, {1, 

0, St-1, …, 2} ... Every sequence in the curly bracket is repeated 

ns times. Sample frequency can have any value not larger than 

fclk/(St*ns).  

Multiplication and addition are configured for U2 integer data. 

Word-length of filter results is set to CC_COEFF_N + 

CC_IN_N + log2(filter_size), where CC_COEFF_N is template 

bit-width, CC_IN_N is input bit-width, filter_size is the size of 

filter window. For multiplication, instances of LPM_MULT IP 

with pipeline are embed, additions are described using Verilog 

+ operator. Reduction of word-length is supported by setting 

two scaling constants. The one constant determines number of 

LSB bits discarded from multiplication result, the second 

constant determines number of LSB bits discarded from filter 

result.  

B. The normalization modules 

Integer pipeline for the W(k) calculation is shown in Fig. 4.   The 

running sum and the running sum of squares in every N-sample 

window are calculated in integer accumulators. Accumulators  

calculate sum(a) = sum(a - 1) + f(a) – f(a - N) and sum2(a) = 

sum2(a - 1) + f2(a) – f2(a - N).  

Fig. 4. Architecture of the W(k) module.  

 

Instances of the LPM_MULT library module are applied for 

multiplications, sum2/N is implemented as fixed point 

multiplication by scaled value of 1/N. Number of bits in 1/N 

mantissa, number of fractional bits in W(k), multipliers 

configurations (pipeline depth, DSP/LUT) are configurable. N-

delay memory delays incoming samples by N sampling periods. 

Delayed signal from the output is used as an outcoming sample 

f(i - N). The N-delay memory is optional and should be included 

for the  NCC_FIP. For the NCC_MEM, the f(i - N) sample can 

be selected from the sampl_N output of the correlation filter. 

Architecture from Fig, 4 can be straightforwardly extended to 

support processing of multiple templates which sizes can differ. 

Two extensions should be made. The first is adding two-stage 

delay memory instead of the N-delay and the select. The first 

stage can contain a memory buffer or select the smpl_N to fetch 

the sample f(i - Nmin), where Nmin is the minimum template size 

from processed group. The second stage will contain additional 

ns - 1 delay buffers. Each of them adds the delay equals to Ndt = 

Nt - Nmin, Nt is the size of t-th template. Consequently, the last 

sample from the window (f(i - Nt)) for currently processed 

template can be selected from the output of an appropriate delay 

branch. The second extension is adding two register banks (or 

two accumulator banks) instead of two single registers in 

accumulators. Each bank contains a register storing results for 

every Nt window. Finally, selector logic chooses sum and sum2 

from output of an appropriate register.  

LCM module consists of 32-bit floating point multiplier. 

Template means, prior written to RAM, are multiplied by the 

running sums. The normalization module (Fig. 5) includes 32-

bit floating point instances: two multipliers, one subtractor, one 

divider and one square root. The arithmetic modules are 

configured in the 32-bit IEEE-754 standard (FP32). Square root 

can be also substituted by look-up table after input conversion 

to the range of -1 ,.., 1. Verilog codes of floating point modules 

were generated using IP Catalog tool from Quartus. The 

ALTERA_FP_FUNCTIONS library was chosen to generate 

arithmetic and format conversion instances. IP generator 

enables customization for FP32, double  precision or custom 

precision formats. The latency of generated instance depends on 

data formats and target clock frequency. Target clock frequency 

was set to 200 MHz.  

L(k) data are written to the FIFO synchronization buffer in 

the BUF1 when its valid signal (L_valid) is set active, LCM(k) 

data are written to the second FIFO in BUF1 when LCM_valid 

is set active. L and LCM data are synchronously read from 

FIFOs, NUM2(k) = (L(k) - LCM(k))2 is calculated and written 

to the FIFO in the BUF2. W(k) data after conversion to FP32 

are multiplied by PS(k) for every template in the group. Next, 

the denominator data are written to the FIFO in the BUF2. 

Control logic generates signals for BUF2 writing, address for 

PS RAM and NCC_valid. Numerator and denominator data are 

synchronously read from BUF2, next NCC(k) = 

sqrt(Numerator2(k) / Denominator(k)) is calculated for every 

template. 

Fig. 5. Structure of the normalization module  

C. Implementation results 

Tables I and II show implementation results of the ncctop for 

Cyclone V 5CGTFD9D5F27C7 FPGA. Intel Quartus Prime 

Lite was used for synthesis, implementation and timing 

analysis. L(k) was calculated with full precision, number of 

mantissa bits in W(k) module was set to 18. PE is the number of 

processing elements in the filter, Nmax is the maximum value of 

N, N has the same value for every template, Ns is the maximum 

number of templates.  

The advantages of the NCC_FIP are lower ALM and memory 

usage and higher clock frequency. Increasing of TDM slightly 

increases ALMs allocation. The NCC_MEM enables 

programming of N and ns but requires sufficient amount of 

FPGA memory. M10K memory blocks in Cyclone V FPGA can 

be configured for several depth - width values, among them are: 
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1k x 8 bit, 512 x 16 bit, 256 x 32 bit [18]. When depth of RAM 

blocks is lower than the technological value, the M10K 

allocation can increase. Memory optimizations for save FPGA 

memory blocks, e.g., merging blocks, can be further 

optimizations of this architecture. 

Calculation throughput for single template from the group is 

1 NCC per ceil(N/PE) * ns clock cycles for NCC_MEM; 1 NCC 

per TDM clock cycles for NCC_FIP. Calculation latency is less 

than 70 clock cycles. Table II summarizes clock performance 

for configurations from Table I. The fclkmin is the clock frequency 

of slow chip corner, the fclkmax is the clock frequency of fast chip 

corner [19]. Results of NCC_MEM Single-port RAM are 

estimated for the same configurations as for the NCC_MEM 

Dual-port RAM.  
TABLE I 

EXPERIMENTAL RESULTS OF NCCTOP. 8-BIT SAMPLES, 

8-BIT TEMPLATES. 

PARAMETERS AREA 

NCC_FIP 

N TDM ns ALMs Registers M10K 
blocks 

DSP 

64 1 1 2124 (2%) 5169 16 42 

4 4 3354 (3%) 6288 16 42 

128 1 1 2423 (2%) 5897 16 74 

4 4 4828 (4%) 8138 16 74 

 
512 

1 1 10202 (9%) 23200 16 222 

4 4 14414 (13%) 20039 16 266 

1024 1 1 43190 (38%) 88213 17 222 

4 4 40158 (36%) 69384 17 342 

NCC_MEM 

PE Nmax Ns ALMs Registers M10K 

blocks 

DSP 

Dual-port RAM (Fig. 3 b)) 

64 8192 4 3782 (3%) 9403 92 74 

32 3866 (4%) 9430 284 74 

128 16384 4 5688 (5%) 13597 169 138 

32 5730 (5%) 13624 553 138 

512 8192 32 16598 (15%) 38271 630 342 

65536 4 16789 (15%)  38480 630 342 

Single-port RAM (Fig. 3 a)) 

512 65536 4 12859 (11%) 30216 629 342 

TABLE II 

EXPERIMENTAL RESULTS OF CLOCK PERFORMANCE 

Architecture fclkmin [MHz] fclkmax [MHz] 

NCC_FIP 160 - 205 260 - 370 

NCC_MEM Dual-port RAM 160 - 200 240 - 310 

NCC_MEM Single-port RAM 150 - 200 230 - 310 

 

Experiments showed that increasing of the ALM allocation may 

lead to decreasing of the maximum value of clock frequency. 

The lowest frequency values were reported for the largest 

architectures NCC_FIP N = 1024 TDM = 1, NCC_MEM PE = 

512. 

IV. THE NCC_FD DESIGN BASED ON FFT 

The NCC_fd design includes a correlation filter designed in the 

frequency domain: 

𝑐𝑜𝑟𝑟(𝑘) = ∑ 𝑓(𝑖 + 𝑘)(𝑠(𝑖) − µ𝑠)𝑁−1
𝑖=0       <=>           

𝐹𝐹𝑇−1(𝐹𝐹𝑇(𝑓𝑘) ∗ 𝑐𝑜𝑛𝑗(𝐹𝐹𝑇(𝑠 − µ𝑠)))  <=>               (7) 

𝐹𝐹𝑇−1(𝐹𝐹𝑇(𝑓𝑘) ∗ 𝐹𝐹𝑇(𝑠𝑟𝑒𝑣 − µ𝑠))         

where  

conj is complex conjugate, srev is s in the reverse order. 

FFT-based correlation is computed using overlap-save 

algorithm [2] applied to stream processing. Stream processing 

steps are as follows.  

1. Pre-processing. Templates are normalized by subtracting 

means, next zeros are padded to the length of FFT. FFT is 

calculated for every pre-processed template. FFT coefficients 

are rounded to the chosen format. As a result, FFT_Mt, t = 0, …,  

ns -1, coefficients are written to memory buffer. 

2. Input samples are divided into blocks of the size L_size = 

FFT_size - M +1, where M is the length of the longest template 

in the set. Last M - 1 samples from previous block are the first 

samples in the next block, followed by L_size new samples. 

Before the first block, M - 1 zeros are inserted at the beginning. 

3. FFT is calculated for the input block (FFTB). 

4. Complex multiplication of FFTs: 

MULBt = FFTB * conj( FFT_Mt). 

5. Inverse FFT: IFFTBt = FFT-1(MULBt). First L_size values of 

IFFTBt real component are L(k) data. Remaining M - 1 values of 

IFFT are discarded. 

If lengths of templates differ, first valid correlation value is 

shifted by M - Nt positions, where Nt is the length of t-th 

template.    

Steps 3 - 5 are repeated for every template. 

Fig. 6. Block diagram of the ncc_fd_proc  

 

Block diagram of the main module of the NCC_fd, denoted as 

ncc_fd_proc, is shown in Fig. 6. After reset prior to writing input 

samples, M - 1 leading zeros are written to the first port of dual-

port DP-RAM. The size of DP-RAM is 2*FFT_size samples. 

Input data are read from the second port of the DP-RAM in 

blocks of FFT_size samples. Data streams for FFT (L_d, 

L_valid) and for W(k) (M_d, M_valid) are formed. Each of 

sample blocks is repeated ns times. Next, read counter is 

decremented by M - 1 to the address of first sample in next 
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block. The W buffer consists of one FIFO buffer and one two-

stage delay buffer. The FIFO buffer stores samples for the time 

related to FFT to IFFT latency. The delay buffer reads incoming 

sample (di), an outcoming (di_N) samples used for calculation 

of the W(k). Sizes of templates in the processed group can be 

different and they are programmed in run-time. The flow control 

ensures proper synchronization between the W(k) stream and 

the ifft_real stream. Correlation results after scaling of the IFFT 

real data are written to the synchronization buffer in the NCC 

normalization module. W(k) data, calculated in a similar way as 

is described in IIIB, are written to the second synchronization 

buffer. The NCC normalization module includes FP32 

multiplication, division, and square root IPs from the 

ALTERA_FP_FUNCTIONS library. Finally, the NCC(k) 

stream for ns templates is available on the module output.  

FFT/IFFT based correlation module (Fig. 7) consists of two 

instances of FFT IP from the Quartus Prime IP library [16]. Data 

flow between modules is based on the Avalon-ST source (src) 

and sink (snk) interfaces. To save FPGA ALM resources, 

integer FFT has been used. Output bit order for this core 

configuration is set to radix-2. Input bit order of FP32 IFFT must 

be set to radix-4. Therefore, reorder buffer (RBuffer) between 

FFT output and complex multiplier is required to change the 

order to radix-4. The complex multiplier is implemented using 

the ALTMULT_COMPLEX IP. If FP32 FFT module is used, 

the reorder buffer is skipped.  

The ncc_fd_proc throughput is L_size NCC results per 

FFT_size clock cycles per single template. The latency is     

(2+Lreo)*FFT_size + Lfl clock cycles, where 

Lreo is 1 if reorder buffer is used, 0 if reorder buffer is skipped, 

Lfl is the latency added by other modules in the data path. 
 

Fig. 7. The architecture of the FFT/IFFT module. 

Example of a timing diagram from simulation of the 

ncc_fd_proc is shown in Fig. 8. In this stimulus, there are four 

templates with sizes of 128, 104, 140, and 160 samples, input 

data block has 2000 samples, 1024-point FFT is used. Overlap 

size is set to M = 159. Input data are divided into three blocks. 

The ncc_fd_proc calculates L_size = 865 NCCs in 1024 clock 

cycles. Every input block is repeated four times, one block per 

one template. As it is shown, the IP core enables connection to 

a busy DMA channel using Avalon-ST flow control. This 

feature was simulated by randomly setting the ncc_ready input 

to 0 during processing of blocks no. 2 and no. 3.  

TABLE III 

EXPERIMENTAL RESULTS OF NCC_FD_PROC OBTAINED FOR: 8-BIT 

SAMPLES, 8-BIT TEMPLATES, INTEGER FFT, INTEGER COMPLEX 

MULTIPLICATION, FP32 IFFT. THE FFT_size IS PROGRAMMABLE 

FFT/IFFT 

length 

Ns ALMs Registers M10K 

blocks 

DSP fclkmin – fclkmax 

[MHz] 

1024 16 15245 (13%) 29058 146 67 140 - 230 

4096 16 18759 (17%) 34861 278 81 135 - 230 

16384 16 22534 (20%) 40620 733 96 135 - 220 

 

Preliminary results of ncc_ft_proc implementation are shown in 

Table III. Memory allocation and latency can be further reduced 

after applying FFT and IFFT with compatible bit orders. 

V. DESIGN VERIFICATION AND RESULTS  

Described designs were verified in ModelSim simulations 

and prototyped on hardware. Reference program (RP) was 

written in Matlab to generate files used in testbenches. Matlab 

xcorr and corrcoef functions were used for calculation of cross-

correlation and NCC. RP generated synthetic signals as 

templates. Templates after multiplying by attenuation factors 

were inserted into the input waveform and noise was added. 

Cross-correlation and NCC results from RP were compared 

sample-by-sample with results from the simulation. Fig. 9 

shows an example stimulus. The input signal is a sum of

 

Fig. 8. Timing diagram from the simulation of the ncc_fd_proc. 
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a slowly changed component, DC, noise and four attenuated 

templates. The first template is a sine wave, the second is 

a frequency modulated sine wave, the third is a rectangle pulse, 

the fourth is a Dirichlet pulse. The length of each of template is 

300 samples.  

TABLE IV 

REPORTED ACCURACY 

ΔNCCmax |δNCCmax|[%] |ΔNCC| 

NCC_td 

-2.0e-06 2.8e-04 2.0e-06 

NCC_fd  integer FFT, FP32 IFFT  

1.3e-04 0.018 2.3e-03 

NCC_fd  integer FFT, FP32 IFFT, 24-bit IFFT input data 

-4.2e-04 0.046 5.6e-02 

 

Fig. 9. Time diagram of an example stimulus (upper picture). Lower pictures 

show the Pearson coefficients calculated between this stimulus and four 

templates. 

 

Reported accuracy for this stimulus is shown in Table 4. ΔNCCmax 

is the maximum absolute error for maximum NCC 

values,|δNCCmax| is the maximum relative error in % for 

maximum NCC values, |ΔNCC| is the maximum absolute error in 

the whole timeseries. Sources of rounding errors in NCC_td are 

1/N multiplying and floating point operations. NCC_fd 

accuracy has been lower what is related to applying the integer 

FFT. Reducing word-length on IFFT inputs to 24-bits by 

discarding 14 least significant bits of complex multiplication 

results has yielded an accuracy of  0.046 %.  

Table V shows the comparison between the proposed 

NCC_FIP/NCC_MEM architectures and [5]. Proposed designs 

enable implementation of NCC function with small FPGA 

resources. Additionally, the NCC_MEM adds programming in 

run-time. 

 

NCC_fd configured with 16384-point and 4096-point 

FFT/IFFT may provide better throughput for templates with 

sizes up to thousands of samples and it can be implemented on 

selected FPGA chip. One of the main differences between 

NCC_td and NCC_fd is significantly larger latency of NCC_fd.  

 

TABLE V 

DESIGNS COMPARISION 

FIP1: NCC_FIP, N=64, TDM=1, ns = 1, 8 x 8 bit 

FIP2: NCC_FIP, N=64, TDM=1, ns = 1, 12 x 12 bit 

MEM1: NCC_MEM, PE=64, Nmax=8192, Ns = 4, 8 x 8 bit 

MEM2: NCC_MEM, PE=64, Nmax=8192, Ns = 4, 12 x 12 bit 

 [5] PCI FIP1 FIP2 MEM1 MEM2 

Template size (N) 64 2,…,64 2,…64 2,…,8192 2,…,8192 

Throughput (NCC/clk) 1 1 1 1 - 128 1 - 128 

Xilinx Artix-7 LUT 21349 - - - - 

Altera Cyclone V ALM - 2124 2339 3782 4751 

Registers 21524 5159 5876 9403 11715 

Memory blocks 0 16 16 92 98 

DSP blocks 120 42 42 74 74 

Max. frequency [MHz] 137.8 200 - 310 200 - 310 200 - 300 180 - 300 

 

The architecture of the prototype system is depicted in Fig. 

10. Tests were performed using Terasic OVSK board, 

containing Cyclone V 5CGTFD9D5F27C7 FPGA. Altera PCIe 

Windows x64 driver and TERASIC_PCIE_AVMM.dll were 

used as an interface between user software and FPGA hardware, 

including write and read DDR memory. Fully functional NCC 

module consists of the computation core (the ncctop or the 

ncc_fd_proc) and the interface logic with internal registers. The 

NCC module has been connected to the PCIe interface. 32-bit 

Avalon-MM port av writes and reads to/from internal registers. 

128-bit Avalon-ST port avst_in writes input samples from 

DDR3 to the module using DMA. Additional DMA channel is 

used to write FFT_M data from the DDR3 to the NCC_fd. 128-

bit Avalon-ST port st_out writes calculated NCC stream to 

DDR3 using separate DMA channel.  

Fig. 10. Hardware for prototyping of the NCC modules 

 

SoPC subsystem ncc.qsys was designed using the Platform 

Designer from Quartus. The ncc.qsys contains the V-series 

Avalon-MM DMA PCIe and the mSGDMA IP cores  [15]. Test 

programs were written in C. Results from RP were compared 

with NCC values from hardware. Performed tests showed that 

the developed NCC modules work correctly. 



K. MROCZEK 

 

 

VI. CONCLUSION 

This paper presents the FPGA IP cores designed for 

calculation of the Pearson correlation coefficient for signal 

template matching. NCC functional modules with cross-

correlation filtering in the time domain and in the frequency 

domain followed by NCC normalization were described. In this 

work, parametrizable Verilog cores were developed what will 

simplify the development of a custom FPGA-based hardware. 

Detailed descriptions of the developed modules together with 

estimation of FPGA resource usage are presented. NCC_td 

enables choosing between resource-optimized FIR IP 

architecture and programmable filter. NCC_fd enables higher 

throughput for large template sizes up to thousands of samples, 

with resource requirements which are dependent on FFT/IFFT 

architectures. Further optimizations of the designs will be 

targeted to improve performance and add configurations for 

multi-channel correlation processor.  
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