
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2025, VOL. 71, NO. 3, PP. 1–7
Manuscript received January 12, 2025; revised June, 2025. doi: 10.24425/ijet.2025.153629

Smoothed per-tensor weight quantization:
a robust solution for neural network deployment

Xin Chang

Abstract—This paper introduces a novel method to improve
quantization outcomes for per-tensor weight quantization, fo-
cusing on enhancing computational efficiency and compatibility
with resource-constrained hardware. Addressing the inherent
challenges of depth-wise convolutions, the proposed smooth
quantization technique redistributes weight magnitude disparities
to pre-activation data, thereby equalizing channel-wise weight
magnitudes. This adjustment enables more effective application
of uniform quantization schemes. Experimental evaluations on
the ImageNet classification benchmark demonstrate substantial
performance gains across modern architectures and training
strategies. The proposed method achieves improved accuracy to
per-tensor quantization without noticeable computational over-
head, making it a practical solution for edge-device deployments.

Keywords—Per-tensor quantization, edge device, neural net-
work compression

I. INTRODUCTION

QUANTIZATION is a fundamental technique in deep
learning, widely used to compress models by reducing

the bit-width of weights and activations (also referred to as
”data”). This approach enables faster inference and reduced
memory consumption, making it particularly valuable for
deploying neural networks on resource-constrained devices.
Two of the most commonly employed quantization methods
are per-tensor quantization and per-channel quantization.

In per-tensor quantization, a single scaling factor s is
applied globally to all weights W or activations in a tensor.
The quantized weights Ŵ are computed as:

Ŵ = round

(
W

s

)
· s, (1)

where the scaling factor s is defined as

s =
max(|W |)
2n − 1

, (2)

with n denoting the bit-width. This approach is computation-
ally efficient due to the uniform scaling factor, making it well-
suited for hardware implementations. However, it can suffer
from precision loss, particularly when the range of values
within the tensor varies significantly across channels.

In contrast, per-channel quantization, assigns a unique
scaling factor si to each channel i. allowing finer-grained

This work was supported by TCL-Research Europe for the experiments.
Author is with Warsaw University of Technology, Poland (e-mail:

xin.chang@pw.edu.pl).

adaptation to the value distribution within individual channels.
The quantized weights Ŵi,j for channel i and element j are
computed as:

Ŵi,j = round

(
Wi,j

si

)
· si, (3)

with the channel-specific scaling factor si defined as:

si =
max(|Wi|)
2n − 1

. (4)

While per-channel quantization improves precision by ac-
counting for the variability in value ranges across channels, it
introduces additional computational overhead due to the use
of multiple scaling factors and poses greater challenges for
hardware implementation.

The distinction between these quantization approaches be-
comes particularly evident in operations such as depth-wise
convolutions. In standard convolutions, each output channel is
computed as a weighted sum of all input channels. This design
enables cross-channel interactions, allowing the network to
combine spatial and cross-channel information effectively. In
contrast, depth-wise convolutions take a more channel-isolated
approach, where separate kernels are applied independently to
each input channel. As a result, each output channel is derived
solely from its corresponding input channel, with no cross-
channel interaction [1], [2].

The unique challenges posed by depth-wise convolution
highlight the limitations of per-tensor quantization and under-
score the need for innovative techniques to achieve efficient
and accurate quantization in such scenarios. This paper ad-
dresses this challenge by introducing a novel smooth quanti-
zation approach designed to optimize per-tensor quantization
for depth-wise convolution operations.

II. LITERATURE REVIEW

Several approaches have been proposed to improve per-
tensor weight quantization, focusing on addressing its inher-
ent challenges. One prominent direction involves equalizing
the magnitude of weights across channels to mitigate the
limitations of global scaling factors in per-tensor operations.
Cross-Layer Equalization (CLE) [3] introduces a method to
scale the weights within each channel and distribute the
magnitudes to neighboring layers. This process equalizes the
weight magnitudes across channels, allowing the neighboring
layers to absorb the adjustments. However, the applicability

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/

2 X. CHANG

of CLE is restricted by its reliance on strict linearity within
layers, due to the requirements of the magnitude distributed
cross layers linearly, which limits its use to activation functions
like ReLU [4] and ReLU6 [5]. Advanced activation functions
such as Swish [6] and Leaky ReLU [7] are incompatible with
this approach due to their non-linear behavior. Furthermore,
while CLE effectively redistributes magnitude across layers, it
does not ensure absolute consistency in the magnitudes post-
equalization, which can still lead to quantization inefficiencies
in certain cases.

Another promising direction is the simultaneous adjustment
of model weights and scaling parameters using regularization
techniques. For example, Solodskikh et al. [8] propose a
method where both weights and scale parameters are opti-
mized under a uniform quantization scheme. The goal is to
minimize the quantization error by ensuring that the quantized
weights Ŵ in Equation 1 closely align with the discrete values
available at lower precision. While this approach reduces
quantization error, it introduces a critical limitation. When
the regularization loss approaches zero, the kernel weights
converge towards periodic signals, a condition that is nearly
impossible to achieve without compromising the original task
performance. This inherent trade-off restricts the effectiveness
of such regularization-based methods, especially for complex
model architectures and diverse datasets.

This paper builds upon the direction established by
SmoothQuant [9], leveraging per-channel quantization to shift
activation quantization challenges to weight quantization. Con-
versely, the proposed solution tackles per-tensor quantization
by transferring weight quantization challenges to activation
quantization, mitigating weight magnitude disparities across
channels.

III. ANALYSIS

Quantizing weights in depth-wise convolution presents
unique challenges, particularly when working with lower-
precision representations 2B , where B is the bit width, and the
kernel values M ×M ×N exceed the available discrete rep-
resentation levels. The inherent non-periodicity and variability
in kernel values ensure quantization errors are unavoidable,
leading to potential degradation in model performance.

Figure 1 illustrates the significant magnitude differences
across channels in a 64-output channel layer of MobileNetV4-
Small [10]. When applying the per-tensor quantization scale
derived from Equation 2, the resultant quantization errors
exceed the value range of most smaller-magnitude channels,
causing a significant drop in task performance introduced by
this layer.

A deeper analysis of channel-wise weight magnitudes re-
veals that Batch Normalization (BN) folding—a widely used
optimization technique for quantization—is the primary source
of this issue. BN is employed during training to stabilize
and accelerate convergence by normalizing activations across
batches [11]. During inference, BN folding is applied to
improve computational efficiency by embedding the BN pa-
rameters (mean, variance, scale, and shift) into the preceding
convolutional layer. This process eliminates the need for

Fig. 1. Per (output) channel weight ranges of a depth-wise convolution layer
in MobileNetV4-Small. The top figure shows the weight ranges after batch
normalization folding, while the bottom figure shows the weight ranges before
batch normalization folding. Each boxplot depicts the minimum, maximum,
second quartile, third quartile, and median for each channel. These figures
highlight the significant differences in channel weight ranges introduced by
batch normalization folding.

separate BN operations, reducing latency and memory usage
[12].

While BN folding simplifies the deployment of quantized
models in resource-constrained environments, such as edge
devices, it introduces unintended side effects. Specifically, the
folding process incorporates the scaling and shifting behavior
of BN into the convolutional weights and biases, amplifying
the channel-wise magnitude differences. This disparity com-
plicates per-tensor quantization, as a single scaling factor fails
to account for the wider dynamic range introduced by BN
folding.

Mathematically, BN normalizes the activations of a layer
using the channel-wise mean µ and variance σ2, with a small
constant ϵ for numerical stability:

x̂ =
x− µ√
σ2 + ϵ

, (5)

The normalized activation x̂ is then transformed using learn-
able parameters γ (scale) and β (shift).

y = γx̂+ β. (6)

During training, the convolutional layer output is expressed
as:

y = γ
(W ∗ x+ b)− µ√

σ2 + ϵ
+ β, (7)

where W and b represent the weights and biases of the
convolutional layer, and ∗ denotes the convolution operation.
BN folding effectively integrates γ, β, µ and σ2 into W

SMOOTHED PER-TENSOR WEIGHT QUANTIZATION: A ROBUST SOLUTION FOR NEURAL NETWORK DEPLOYMENT 3

and b. However, this integration often amplifies discrepancies
in weight magnitudes across channels, making global per-
tensor quantization unsuitable and necessitating alternative
approaches.

After folding, the output of the convolutional layer becomes:

Wfolded =
γW√
σ2 + ϵ

, bfolded =
γ(b− µ)√
σ2 + ϵ

+ β. (8)

The output of the convolutional layer then becomes:

y = Wfolded ∗ x+ bfolded, (9)

effectively combining the effects of both the convolution
and the batch normalization into a single operation. This
integration eliminates the need for separate normalization
steps during inference, reducing computational overhead while
preserving the performance benefits of BN.

However, as illustrated in Figure 1, BN folding inadvertently
introduces significant magnitude differences across weights in
different channels. These disparities exacerbate the challenges
of per-tensor quantization by increasing the dynamic range
within the tensor.

The quantization error e(w) for a weight w ∈ W arises due
to the rounding operation during quantization. The maximum
possible quantization error, emax, is directly proportional to
the maximum value M in the weights and inversely pro-
portional to the precision determined by the bit-width B.
Mathematically:

emax =
M

2 · (2B−1 − 1)
(10)

This relationship highlights that larger weight values result
in higher quantization errors, underscoring the importance of
managing weight magnitudes during quantization effectively.

The challenges associated with quantization become par-
ticularly apparent when comparing normal convolution layers
to depth-wise convolution layers. Depth-wise convolutions,
commonly used in lightweight models like MobileNet, differ
fundamentally from normal convolutions in their operation.
These differences in computation also affect how weight
magnitudes are distributed and, consequently, how quantiza-
tion errors propagate. To understand the root cause of these
challenges, we analyze the forward and backward passes for
both types of layers.

Normal Convolution

In standard convolution, each kernel K with weights wij

contributes to all output channels by convolving across multi-
ple input channels.

a) Forward Pass:: The output at location (m,n) in
channel o is computed as:

Yo,m,n =

Cin∑
c=1

kh∑
i=1

kw∑
j=1

wij,c,o ·Xc,m+i,n+j .

b) Backward Pass:: The gradient with respect to a single
weight wij is:

∂L

∂wij
=

Cout∑
o=1

H′∑
m=1

W ′∑
n=1

δo,m,n ·Xc,m+i,n+j , (11)

This formulation ensures that gradients are accumulated
from all input and output channels, resulting in robust gradient
signals during optimization.

Depth-Wise Convolution

In contrast, depth-wise convolution operates differently.
Each kernel Kc works independently on a single input chan-
nel Xc, producing the corresponding output channel Yc. In
contrast, depth-wise convolution operates differently. Each
kernel Kc works independently on a single input channel Xc,
producing the corresponding output channel Yc.

c) Forward Pass:: The output at location (m,n) for input
channel c is:

Yc,m,n =

kh∑
i=1

kw∑
j=1

wij,c ·Xc,m+i,n+j .

d) Backward Pass:: The gradient with respect to a single
weight wij is:

∂L

∂wij
=

H′∑
m=1

W ′∑
n=1

δc,m,n ·Xc,m+i,n+j . (12)

Here, gradients are accumulated only from the correspond-
ing input channel c, leading to a sparser and weaker gradient
signal compared to standard convolution.

This difference not only introduces magnitude variations
during float32 training but also complicates Quantization-
Aware Training (QAT). In standard convolution, the gradients
for a single weight are computed by aggregating contributions
across all input and output channels. This cross-channel de-
pendency enables a more robust gradient flow, allowing the
model to partially recover even when the quantization scale is
suboptimal. Conversely, in depth-wise convolution, the gradi-
ent for a weight is computed solely within its corresponding
single channel, as can be seen from Equation 11 and 12. This
lack of cross-channel gradient sharing amplifies the impact
of an unsuitable quantization scale, making QAT significantly
more challenging for depth-wise convolution layers.

As shown in Figure 2, depth-wise convolution exhibits
a broader spread in kernel weight distribution compared to
standard convolution. According to Equation 10, this broader
distribution leads to higher quantization errors per weight,
further emphasizing the challenges associated with quantizing
depth-wise convolution layers.

IV. PROPOSAL

Our proposed solution addresses the quantization challenges
in weights by redistributing the burden of quantization errors
from weights to activations. This is based on the observation
that the outputs of a quantized layer are influenced by two
quantization processes: weight quantization and activation
quantization, as shown in Equation 13.

4 X. CHANG

Fig. 2. Histogram of convolution weights for certain layers after BN folding in
MobileNetV4-Small. Top: normal convolution layers (36 layers total). Bottom:
depth-wise convolution layers (17 layers total).

yq = Clamp

(⌊
1

sy
·
(
sw · wq

)
∗
(
sx · xq

)
+ zy

⌋
, qmin, qmax

)
(13)

Where:
• wq = Quantize(w, sw, zw): Quantized weights.

wq = Clamp

(⌊
w

sw

⌋
+ zw, qmin, qmax

)
• xq = Quantize(x, sx, zx): Quantized activations.

xq = Clamp

(⌊
x

sx

⌋
+ zx, qmin, qmax

)
• ∗: Represents the convolution or matrix multiplication

operation.
• sy = sw · sx: The scale factor for the output.
• zy: The zero-point for the quantized output.
• Clamp: Ensures that the result stays within [qmin, qmax].
To reduce the quantization error in weights, we introduce an

additional scaling matrix sm before the quantization process.
This matrix adjusts wq by normalizing its magnitude and
redistributes the scaling to xq . The updated quantized output
equation is defined in Equation 14:

Fig. 3. Histogram of convolution weights for smoothed weight depth-wise
convolution layers (17 layers total)

yq = Clamp

(⌊
1

sy
·
(
sm · sw · wq

)
∗
(
sx · 1

sm
· xq

)
+ zy

⌋
, qmin, qmax

)
(14)

The scaling matrix sm redistributes the weight magnitudes
across channels to improve quantization accuracy. Specifically,
sm is defined as a diagonal matrix where each element
corresponds to the maximum absolute value of weights within
a channel:

sm = diag
(
max(|wc|)

)
, (15)

where wc represents the weights for the c-th channel, and
max(|wc|) is the maximum absolute value within that channel.
We can compare Figure 4 and Figure 5 to see how the weights
are normalized after the smoothing. By applying this approach,
we migrate the challenges of weight quantization to activation
quantization. While this scaling appears to shift the issue
linearly, its actual impact is nonlinear.

When quantizing weights wq , the quantization error in-
troduced is directly propagated to the outputs yq for any
given input xq . This deterministic behavior means that larger
quantization errors in weights consistently result in larger
errors in the outputs. In contrast, activation quantization errors
are not deterministic, as xq varies based on the input data.
This variability allows for the possibility of reducing overall
quantization errors across output samples.

By appropriately scaling the channel magnitudes and com-
bining this approach with effective data clipping solutions,
such as those proposed by Nvidia [13], we minimize the occur-
rence of output samples yq with significant quantization errors.
However, while clipping activations can be effective, applying
clipping to weights is not feasible due to their deterministic
nature. Clipping weights would introduce a fixed clipping error
that propagates consistently to all outputs, exacerbating the
quantization issue.

In an ideal scenario, if all quantization errors were con-
fined to weights, the output quantization errors would be
deterministic, as weights remain fixed. However, by migrating

SMOOTHED PER-TENSOR WEIGHT QUANTIZATION: A ROBUST SOLUTION FOR NEURAL NETWORK DEPLOYMENT 5

these errors to activations, we introduce variability, which can
reduce the overall quantization error across output samples,
even when the maximum possible error due to magnitude
differences remains high.

This issue becomes even more critical in the context of
Quantization-Aware Training (QAT). When weights have large
quantization errors, these errors are deterministic and consis-
tently affect all samples during the training process. As a
result, the backpropagation step introduces errors for every
training sample, making it challenging for the model to adapt
effectively.

In contrast, when the magnitude is migrated linearly to
data quantization, the variability of input data allows for a
distribution of quantization errors. Some samples will have
minimal quantization error, providing cleaner gradients during
backpropagation. This variability helps the model adapt to
the quantization effects more effectively, as it can leverage
the low-error samples to guide training and reduce overall
quantization impact.

V. EXPERIMENT

To showcase the effect of smoothed weight quantization, we
conducted experiments on the ImageNet [14] dataset using
several popular edge-device friendly neural network archi-
tectures to evaluate its influence on classification accuracy.
Additionally, we assessed its impact on processing speed by
running measurements on an edge-device-targeted processing
chip, the MT9652 from Mediatek. This chip features a 64-
bit Arm Cortex-A73 CPU with four cores and a maximum
frequency of 1.3 GHz.

TABLE I
INFERENCE SPEED COMPARISON OF THE TYPICAL AND PROPOSED

SOLUTION.

name fused BN smoothed mean(ms)
mv4s 138.0730
mv4s X 48.4567
mv4s X X 49.9928
mv2 266.3170
mv2 X 83.4738
mv2 X X 88.1750
mv3l 144.0390
mv3l X 64.7894
mv3l X X 70.8392
mv3s 40.8741
mv3s X 22.1297
mv3s X X 24.0313

Table I illustrates the impact of BN folding and smooth
quantization on inference speed. The reported inference times
are mean values calculated over 100 iterations for 224×224×3
input data, executed on the device’s CPU. It is evident that
BN folding plays a critical role, significantly reducing infer-
ence time. While the proposed smoothed weight quantization
introduces a slight overhead—typically adding only a few mil-
liseconds—this trade-off is justified by the substantial potential
improvements in task performance it enables.

Per-channel weight quantization, as described by Equation
4, generally does not pose significant challenges, and many
studies, such as Nvidia’s work [13], report no accuracy

drop, so do we evaluated. However, per-tensor quantization
introduces greater difficulties. Table II presents the results
of applying standard weight quantization and the proposed
smoothed weight quantization method. The results indicate
that smoothed quantization consistently achieves better quan-
tization performance across a variety of popular efficient
models.

Furthermore, the proposed method, based on Equation 14,
only requires linear scaling before activation, making it agnos-
tic to the type of activation function used. This is a notable
advantage over methods like CLE, which are restricted to
specific activation functions such as ReLU.

TABLE II
PER-TENSOR WEIGHT QUANTIZATION RESULTS WITH/WITHOUT SMOOTH

WEIGHT QUANTIZATION.

name smooth accuracy
mv4s X 73.39%
mv4s 71.41%
mv2 X 72.08%
mv2 72.02%
mv3l X 73.77%
mv3l 73.75%
mv3s X 66.98%
mv3s 65.99%
enet-b0 X 76.73%
enet-b0 74.48%
enet-v2s X 80.91%
enet-v2s 80.65%

Different training strategies and recipes can significantly
influence the performance of the final quantized model. At
the same time, they also impact critical factors such as batch
normalization statistics and the distribution of weights. As a
result, certain model checkpoints may pose greater challenges
for quantization, despite their potential to achieve higher
float32 performance.

In Table III, we present results using publicly available
checkpoints for MobileNetV4-Small and MobileNetV3-Large,
sourced from Torch [15] or Timm [16], and trained with dif-
ferent recipes. The results demonstrate that smoothed weight
quantization is effective across all training recipes, achieving
even better performance when applied to higher-performing
float32 model checkpoints.

Upon examining the details of the model checkpoints, we
observe in Figure 4 that models trained with different recipes
exhibit variations in weight distributions. These differences
arise because the magnitude information is carried differently
across layers, which can lead to higher quantization errors in
certain model checkpoints.

The proposed smoothed weight quantization provides a
unified solution for weight quantization. As shown in Figure
5, the same depth-wise convolution layers become almost
uniform in their weight distributions after applying smoothed
weight quantization.

Additionally, we evaluated full model quantization, incor-
porating both weight and data quantization. For data quanti-
zation, we adopted Nvidia’s best data clipping solution [13].
While the approach appears to linearly shift the channel-
wise magnitude information (sw) to data quantization as per

6 X. CHANG

TABLE III
PER-TENSOR WEIGHT QUANTIZATION RESULTS WITH/WITHOUT SMOOTH

QUANTIZATION FOR DIFFERENT CHECKPOINTS.

name quantized smooth accuracy
mv4(timm-2400e) 73.52%
mv4(timm-2400e) X X 73.39%
mv4(timm-2400e) X 71.41%
mv4(timm-1200e) 73.36%
mv4(timm-1200e) X X 73.04%
mv4(timm-2400e) X 72.35%
mv3-l(torch-v1) 73.91%
mv3-l(torch-v1) X X 73.75%
mv3-l(torch-v1) X 73.12%
mv3-l(torch-v2) 75.57%
mv3-l(torch-v2) X X 75.40%
mv3-l(torch-v2) X 75.07%
mv3-l(timm) 75.09%
mv3-l(timm) X X 75.11%
mv3-l(timm) X 74.15%

Fig. 4. histogram of convolution weights after batch normalization fusion in
MobilenetV4-small. top: normal convolution layers, in total 36. bottom: depth
wise convolution layers, in total 17.

Equation 14, the variability of xq (unlike the fixed values
of wq) allows for better outcomes when combined with data
clipping methods. This flexibility of xq yields improved results
compared to native weight quantization combined with data
clipping. Moreover, weight clipping is not advisable, as it
introduces a fixed clipping error that affects every forward
and backward iteration, compounding errors during training.

Fig. 5. histogram of convolution weights after batch normalization fusion in
MobilenetV4-small. top: normal convolution layers, in total 36. bottom: depth
wise convolution layers, in total 17.

The final results are presented in Table IV, showcasing the
superior performance of the approach in full model quantiza-
tion.

TABLE IV
MODEL ACCURACY WITH WEIGHT AND SMOOTH QUANTIZATION FOR THE

SAME NETWORK BUT DIFFERENT CHECKPOINTS.

name quantized smooth accuracy
mv4(timm-2400e) 73.52%
mv4(timm-2400e) X X 73.05%
mv4(timm-2400e) X 70.21%
mv4(timm-1200e) 73.36%
mv4(timm-1200e) X X 72.84%
mv4(timm-2400e) X 72.04%
mv3-l(torch-v1) 73.91%
mv3-l(torch-v1) X X 73.35%
mv3-l(torch-v1) X 72.89%
mv3-l(torch-v2) 75.57%
mv3-l(torch-v2) X X 75.02%
mv3-l(torch-v2) X 74.82%
mv3-l(timm) 75.09%
mv3-l(timm) X X 74.87%
mv3-l(timm) X 73.79%
enet-v2s 82.02%
enet-v2s X X 81.25%
enet-v2s X 80.02%

SMOOTHED PER-TENSOR WEIGHT QUANTIZATION: A ROBUST SOLUTION FOR NEURAL NETWORK DEPLOYMENT 7

VI. CONCLUSIONS

In this paper, we addressed the challenges of weight quan-
tization in deep neural networks, particularly for depth-wise
convolution layers, which are integral to efficient models like
MobileNet. By introducing the smoothed weight quantization
method, we demonstrated its ability to redistribute channel-
wise magnitude variations, effectively reducing quantization
errors and improving the overall performance of quantized
models.

The experiments on the ImageNet dataset and edge-device-
targeted hardware, such as the Mediatek MT9652 chip, vali-
dated the efficacy of the proposed approach across a variety
of popular network architectures. Unlike conventional weight
quantization techniques, our method achieves superior quanti-
zation performance without being constrained by activation
functions, a limitation found in methods like Cross-Layer
Equalization.

Furthermore, we showed that smoothed weight quanti-
zation works consistently across model checkpoints trained
with diverse recipes, providing a unified solution for weight
quantization. When combined with effective data quantization
techniques, such as Nvidia’s data clipping method, the ap-
proach delivers improved accuracy for full model quantization.
Importantly, it avoids the pitfalls of weight clipping, which in-
troduces deterministic errors that degrade model performance.

In conclusion, the smoothed weight quantization method
provides a robust, activation-agnostic, and hardware-friendly
solution for tackling the challenges of quantization in mod-
ern neural networks, paving the way for more efficient and
accurate deployment of deep learning models on resource-
constrained devices.

REFERENCES

[1] S. Yun and A. Wong, “Do all mobilenets quantize poorly? gaining
insights into the effect of quantization on depthwise separable
convolutional networks through the eyes of multi-scale distributional
dynamics,” 2021. [Online]. Available: https://arxiv.org/abs/2104.11849

[2] T. Dinh, A. Melnikov, V. Daskalopoulos, and S. Chai, “Subtensor
quantization for mobilenets,” 2020. [Online]. Available: https://arxiv.
org/abs/2011.08009

[3] R. Krishnamoorthi, “Quantizing deep convolutional networks for
efficient inference: A whitepaper,” CoRR, vol. abs/1806.08342, 2018.
[Online]. Available: http://arxiv.org/abs/1806.08342

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems, 2012.

[5] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. Chen,
“Inverted residuals and linear bottlenecks: Mobile networks for
classification, detection and segmentation,” CoRR, vol. abs/1801.04381,
2018. [Online]. Available: http://arxiv.org/abs/1801.04381

[6] P. Ramachandran, B. Zoph, and Q. V. Le, “Swish: a self-gated activation
function,” arXiv: Neural and Evolutionary Computing, 2017. [Online].
Available: https://api.semanticscholar.org/CorpusID:196158220

[7] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in Proceedings of the In-
ternational Conference on Machine Learning, 2013.

[8] K. Solodskikh, V. Chikin, R. Aydarkhanov, D. Song, I. S. Zhelavskaya,
and J. Wei, “Towards accurate network quantization with equivalent
smooth regularizer,” in European Conference on Computer Vision,
2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:
253448431

[9] G. Xiao, J. Lin, M. Seznec, H. Wu, J. Demouth, and S. Han,
“Smoothquant: Accurate and efficient post-training quantization for
large language models,” 2024. [Online]. Available: https://arxiv.org/abs/
2211.10438

[10] D. Qin, C. Leichner, M. Delakis, M. Fornoni, S. Luo, F. Yang,
W. Wang, C. Banbury, C. Ye, B. Akin, V. Aggarwal, T. Zhu, D. Moro,
and A. Howard, “Mobilenetv4 – universal models for the mobile
ecosystem,” 2024. [Online]. Available: https://arxiv.org/abs/2404.10518

[11] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in International
Conference on Machine Learning (ICML), 2015.

[12] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, and
H. Adam, “Quantization and training of neural networks for efficient
integer-arithmetic-only inference,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[13] H. Wu, P. Judd, X. Zhang, M. Isaev, and P. Micikevicius, “Integer
quantization for deep learning inference: Principles and empirical
evaluation,” 2020. [Online]. Available: https://arxiv.org/abs/2004.09602

[14] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE Conference on
Computer Vision and Pattern Recognition, 2009, pp. 248–255.

[15] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala,
“Pytorch: An imperative style, high-performance deep learning
library,” in Advances in Neural Information Processing Systems,
H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc,
E. Fox, and R. Garnett, Eds., vol. 32. Curran Associates, Inc.,
2019, pp. 8024–8035. [Online]. Available: https://papers.nips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library

[16] R. Wightman, “Pytorch image models,” https://github.com/huggingface/
pytorch-image-models, 2021.

https://arxiv.org/abs/2104.11849
https://arxiv.org/abs/2011.08009
https://arxiv.org/abs/2011.08009
http://arxiv.org/abs/1806.08342
http://arxiv.org/abs/1801.04381
https://api.semanticscholar.org/CorpusID:196158220
https://api.semanticscholar.org/CorpusID:253448431
https://api.semanticscholar.org/CorpusID:253448431
https://arxiv.org/abs/2211.10438
https://arxiv.org/abs/2211.10438
https://arxiv.org/abs/2404.10518
https://arxiv.org/abs/2004.09602
https://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library
https://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library
https://github.com/huggingface/pytorch-image-models
https://github.com/huggingface/pytorch-image-models

	Introduction
	Literature review
	Analysis
	Proposal
	Experiment
	Conclusions
	References

