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Abstract—Pumping systems play an important role in 

agriculture because they provide the necessary level of irrigation 

needed to increase crop yields. Pump malfunctions result in 

equipment downtime, reduced efficiency of agricultural 

production and significant financial losses. Thus, the 

development of an early fault detection and diagnosis system 

leveraging sensor analytic, filtering techniques, and machine 

learning (ML) technologies constitutes a critical applied research 

challenge. The aim of this research is to develop and validate 

early fault detection and classification methods for pumping 

systems using advanced machine learning algorithms and sensor 

data analysis. 
 

Keywords—vibration signal; time series; earing fault; particle 

swarm optimization; normalization 

I. INTRODUCTION 

RADITIONAL diagnostic methods for pumping systems 

are based on manual and regular inspections. Vibration 

analysis [1], temperature analysis [2], wear analysis, motor 

current signature analysis [3] and acoustic emission analysis 

[3] have been the basis of many diagnostic methods. Vibration 

analysis is considered the most effective of these methods 

because it can provide significant information about 

anomalies. Their main drawbacks include low accuracy, 

inability to detect hidden issues in a timely manner, and heavy 

reliance on manual labor. By contrast, modern diagnostic 

methods provide adaptive filtering, feature extraction, and 

model training on large amounts of sensory data. Modern 

machine learning methods are automated and accurate, but 

require large volumes of labeled data and complex 

infrastructure for processing 

Faults in irrigation systems are mainly detected through 

periodic manual inspections or basic monitoring based on 

threshold values. Predicting and monitoring maintenance in 

real time has been made possible by recent developments in 

machine learning and sensor technologies [5]. The 

introduction of the Internet of Things (IoT) enhances remote 
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monitoring capabilities by facilitating the real-time transfer of 

sensor data to centralized systems. Sensor fusion techniques 

that combine data from multiple sensors will improve 

diagnostic accuracy. For example, high diagnostic accuracy 

can be achieved by fusing data from vibration, pressure, and 

temperature sensors [6]. However, noise and data redundancy 

remain significant challenges in sensor deployment. The 

application of dimensional reduction techniques such as PCA 

is necessary due to the large amount of data from different 

sensors [7]. 

Irrigation pumping systems utilize several sensors to 

monitor operating parameters. These include temperature, 

pressure, vibration and flow sensors. For example, studies 

have shown that vibration data is critical for detecting 

mechanical faults, and they have shown that the accuracy of 

fault detection using neural networks is 93 percent [8]. To 

monitor environmental conditions that affect pump 

performance, temperature and humidity sensors are also 

needed [9].  

Leaks, clogs, pump wear and vibration are the most 

common pump problems. These faults cause changes in 

pressure, water flow, vibration and temperature in pump parts. 

In developing an effective condition monitoring technique, 

one of the important steps is to choose the right approach. A 

model-based approach based on physical and mathematical 

models of the equipment provides lower accuracy for complex 

installations, while a data-driven machine learning approach is 

more promising. Neural networks, RF, SVM, KNN and 

ensemble models are all machine learning algorithms with 

great potential [10, 11]. 

II. EXPERIMENTAL SETUP 

Having a suitable dataset is essential for building a 

classification algorithm. There are open datasets such as 

“NASA repository” and experimental platform 

“PROGNOSTIA”. However, in this study, experimentally 

obtained datasets were used. For this purpose, an experimental 

setup consisting of a three-phase induction motor with 

variable speed capability, a pumping equipment rotating 

element bearing, and a power transmission system was 

designed. The pumping equipment bearing was mounted in 

the system in such a way that it could be easily replaced. 

There were also opportunities to change the balancing mass of 

the system. The development of the experimental setup was 

one of the objectives of this research work. It was necessary to 
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ensure the reliability of the various components used to 

develop this setup. The effectiveness of the machine learning 

approach is highly dependent on the quality of the data. 

Figure 1 shows the experimental setup. A three phase 

induction motor with a rated power of 0.5 hp and speed up to 

6000 rpm was used as the power source in the experimental 

setup. A frequency converter (FC) with rated frequency from 

0 to 599 Hz was installed in front of the induction motor to 

operate the machine under different operating conditions. 

The power supply from the primary source was supplied to 

the motor through this IF. The shaft was connected to the 

motor using a flexible joint. Four pumping equipment 

bearings carried the static and dynamic load on the shaft. 

Flexible coupling and mounting systems were used for easy 

replacement of the pumping equipment bearings and the shaft. 

In the experiment, it was possible to create faults in all 

bearings of pumping equipment, this paper considers one 

bearing of pumping equipment to establish a reference point. 

A vibration analyzer with a measurement range of ±5 VAC, a 

frequency range of 2 to 10 kHz and a maximum sampling rate 

of 25.6 kHz based on the Raspberry Pi 4 platform was used. 

Acceleration data was measured using a Ronds accelerometer 

sensor with a measurement range of ±80 g, a frequency range 

of 0.7 to 10,000 Hz and a resonance frequency of about 

30 kHz. 

 

 
Fig.2.Experimental setup diagram with motor and converter 

III. METHODOLOGY OF WORK 

In the experimental part, a modular hardware-software 

system based on Raspberry Pi 4 was developed to monitor 

irrigation pump parameters using vibration, water flow, and 

electrical sensors. Real-time sensor data were preprocessed on 

the Raspberry Pi and transferred to a PC, where filtering, 

normalization, and feature extraction were performed. Key 

features were calculated in time and frequency domains using 

statistical analysis and FFT to support machine learning–

based fault diagnosis. The overall methodology of the work 

can be divided into several stages, as illustrated in Figure 2. 

All stages are described below. 

The obtained attributes served as input data for machine 

learning models implemented at the stages of diagnostics and 

forecasting. As a result, the system provided not only the 

classification of technical condition of pumps (normal / 

faulty), but also the calculation of energy and water 

consumption parameters, allowing to assess the efficiency of 

the equipment as a whole. Such integration of sensor 

monitoring with intelligent analytics creates prerequisites for 

building full-fledged predictive maintenance systems in the 

field of agricultural water technologies.  

 

 
 

Fig.2. Structure of the monitoring and diagnostics system 

As mentioned above, only one pumping equipment bearing 

was considered as test pumping equipment. All data of the 

serviceable and faulty bearing unit were collected according 

to a predefined data generation plan as shown in Table I. 
 

TABLE I  

DATA GENERATION PLAN 

Number Pumping equipment bearing condition Motor speed, Hz 

1 Without defect 20 

2 Faulty outer ring 10, 20, 30 
3 Inner ring malfunction 10, 20, 30 

4 Cage malfunction 10, 20, 30 

 

For example, Outer_Race_10 (OR-10) denotes a set of 

outer ring fault data collected at a frequency of 10 Hz. The 

generated vibration data were collected using an 

accelerometer mounted on the pump equipment casing. 

The experimental data obtained from the rig using the 

accelerometer and transducers is saved locally on the 

Raspberry Pi 4 platform as time series (oscillograms). These 

time domain signals are then converted into .txt format and 

datasets (dataset) in .csv format. In the next step, various 

features are extracted from the original time domain signals 

such as: 

- Kurtosis (measure of tailedness or peakedness), 

- Amplitude factor (crest factor), 

- Form factors (form factors), 

- and others – using appropriate mathematical formulas [12]. 

Based on the extracted features, a feature matrix is formed. 

The subsequent stage is to develop models (machine 

learning algorithm) for fault detection. In the last stage, the 

model was used for classification and its performance was 

evaluated using the following metrics: 

- precision (accuracy), 

- precision, 

- recall (completeness), 

- F1 score. 
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IV. MACHINE LEARNING METHOD FOR FAULT DETECTION 

As part of this work, a fault detection approach was 

implemented based on the training of a Support Vector 

Machine (SVM) model with automatic hyperparameter 

optimization using the Particle Swarm Optimization (PSO) 

algorithm. The multi-class SVM, a classification algorithm 

based on the principle of structural risk minimization (SRM) 

[13], is employed in this study. SVM is efficient for small 

samples and searches for an optimal separating hyperplane that 

maximizes the gap between classes. The data points closest to 

the hyperplane are known as support vectors. For any given 

data set (u1, v1), (u2, v2),..., (un, vn), 𝑢𝑖∈ 𝑅𝑛  are considered as 

inputs, where u and v represent the corresponding data points of 

the reference vectors, а 𝑣𝑖∈(-1,+1) are the outputs for each ui. 

A hyperplane in feature space is defined as: 

 f(x) = ωTs + b = 0, (1) 

where ∈Rd is the normal to the hyperplane and b∈R denotes 

the displacement (bias).  

For linearly separable data: 

 yi(ωTxi + b) ≥ 1, ∀i. (2) 

The optimizing problem is to maximize the gap between 

classes: 

 mimimize
1

2
‖ω‖2, (3) 

under the conditions 

 yi(ωTxi + b) ≥ 1. (4) 

Variable deviations are introduced to allow for errors (noise 

in the data) ξi≥0. Then the optimization problem: 

 mimimize
1

2
‖ω‖2 + С ∑ ξin

i=1 , (5) 

where: 

 yi(ωTxi + b) ≥ 1 − ξi, ξi ≥ 0, (6) 

and C>0 denotes the regularization parameter that controls the 

penalty for misclassification. 

Particle Swarm Optimization (PSO) algorithm belongs to 

stochastic and population-based optimization methods. 

Instead of a single solution, it works with multiple particles 

(particles), each representing a possible solution to the 

problem. [14].  

Each particle has: 

- position xi ∈ Rn – the current solution; 

- velocity vi ∈ Rn – the direction and magnitude of 

movement in the solution space; 

- personal best solution pi – the best position found by it; 

- global best solution g – the best solution among all 

particles. 

The velocity of each particle at iteration t is updated 

according to the following formula: 

 𝑣𝑖(𝑡 + 1) = 𝜔 ⋅ 𝑣𝑖(𝑡) + 𝑐1 ⋅ 𝑟1 ⋅ (𝑝𝑖 − 𝑥𝑖(𝑡)) + 𝑐2 ⋅ 𝑟2 ⋅

(𝑔 − 𝑐1 ⋅ 𝑥𝑖(𝑡)),  (7) 

 

The position is updated as: 

 xi(t + 1) = xi(t) + vi(t + 1), (8) 

where:  is the inertial coefficient (aspiration to the current 

direction), c1, c2 are cognitive and social coefficients, 

r1,r2∈[0,1] are some random values (ensure stochasticity), pi is 

the personal best position (exploration), and g denotes the 

social experience (exploitation). 

The proposed PSO-SVM approach reduces the 

computational complexity compared to the brute force 

method, has the ability to avoid local minima and 

demonstrates improved classification accuracy, which makes 

it a preferred tool in the tasks of intelligent diagnostics of 

technical systems. 

To objectively evaluate the effectiveness of the developed 

classification model, we used standard metrics based on the 

error matrix (confusion matrix). The error matrix is a table of 

size K×K (where K is the number of classes), each cell of 

which Mij shows the number of objects belonging to true class 

i, but assigned to class j by the model. The following metrics 

are calculated on the basis of the error matrix: 

- Accuracy (9) reflects the proportion of correctly 

classified objects to all objects. 

- Recall (10), or sensitivity, measures the ability of the 

model to correctly identify objects of a particular class, 

A high Recall value is important in tasks where a 

missed error (false negative) is critical (e.g., fault 

diagnosis). 

- Precision (11) shows how many of the objects, actually 

belong to this class. A high Precision value is critical 

when false positives are undesirable (e.g., false alarms). 
 

 Accuracy =  
TP+TN

TP+TN+FP+FN
 (9) 

 Recall =  
TP

TP+FN
. (10) 

 Precision =  
TP

TP+FP
. (11) 

 

F1-score (12) is a harmonic mean between Precision and 

Completeness, providing a balanced score. F1-score is 

particularly useful in unbalanced classes, where high accuracy 

on a single metric does not guarantee overall classification 

performance. 
 

 F1score =  
Precision×Recal

Precision+Recal
. (12) 

 

Thus, a comprehensive analysis of the diagnosis model was 

performed using Accuracy, Precision, Recall and F1-score 

metrics, which provided a comprehensive evaluation of both 

generalizability and robustness of classification on all types of 

pumping equipment faults. This is especially important in 

technical diagnostic tasks where different types of faults have 

different criticality. The results of the PSO-SVM model 

classification quality evaluation on the metrics of precision, 

recall and F1-score on the test sample are presented in 

Table II. 

High F1-score values (>0.90) for all classes confirm the 

effectiveness of the model in bearing fault differentiation 

tasks. It is particularly noteworthy that perfect accuracy and 

completeness (1.00) was achieved for the Inner Race Fault 

class, indicating stable identification of this type of fault. 
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TABLE II  

CLASSIFICATION METRICS FOR EACH CLASS 

Class Precision Recall F1-Score Support 

Normal 0.97 1.00 0.98 15 

Outer Race Fault 0.95 0.92 0.93 13 

Inner Race Fault 1.00 1.00 1.00 12 
Cage Fault 0.89 0.85 0.87 20 

Macro average 0.95 0.94 0.94 — 

Weighted average 0.95 0.95 0.95 60 
Normal 0.97 1.00 0.98 15 

Outer Race Fault 0.95 0.92 0.93 13 

 

V. RESEARCH RESULTS 

Examples of experimental data are shown in the following 

figures. Figure 3 shows the time diagram of the intact bearing 

– Sensor 1, and Figure 7 shows the time diagram of the Faulty 

bearing – Sensor 2. For the intact bearing the maximum 

amplitude was 0.0035 m/s2 while for the faulty bearing the 

amplitude increased to 0.006 m/s2 

 
Fig.3. Filtered vibration data from Sensor 1 (serviceable) 

In Figure 3 on the abscissa axis the time index is plotted (in 

arbitrary units), corresponding to discrete samples of the 

signal, and on the ordinate axis - normalized values of 

vibration amplitude. The signal does not contain pronounced 

impulse emissions characteristic of contact surface damage, 

and the vibrations remain within the established amplitude 

range. The vibration amplitude is within the range from –0.5 

to +0.9, and the signal structure demonstrates statistical 

stability, which indicates the absence of signs of mechanical 

malfunctions 

 
Fig.4. Vibration sensor data from Sensor 2 (faulty) 

The graph in Figure 7 is constructed by analogy with 

Figure 3: the time index is plotted along the abscissa axis, and 

the normalized vibration amplitudes are plotted along the 

ordinate axis. In contrast to the signal of serviceable 

condition, this graph is characterized by higher irregularity 

and the presence of local anomalous emissions. Denser 

impulse oscillations are especially clearly observed, which 

indicates the presence of shock interactions between rolling 

elements and damaged elements of bearing shells.  

The figure shows the stage of preliminary processing of the 

vibration signal received from Sensor 1 using the filtering 

steps. The blue color represents the original signal, and the red 

line represents the result of filtering performed using a band-

pass filter adjusted to remove high-frequency noise and 

possible measurement artifacts. The application of filtering at 

this stage allowed to significantly improve the signal-to-noise 

ratio and increase the reliability of the subsequent extraction 

of features used for machine learning. 

 
Fig.5. Data filtering Sensor 1 

Figure 6 shows the result of filtering the vibration signal 

from Sensor 2 that detected a bearing condition with a fault. 

The green area represents the original data and the yellow-

orange graph of the filtered signal. Filtered using a band-pass 

filter designed to suppress high frequency noise and stabilize 

the signal. After filtering, it was possible to significantly 

suppress spurious vibrations while retaining informative 

components related to the fault dynamics. Filtering the 

vibration signal improved data quality and provided a more 

accurate differentiation between normal and faulty modes of 

operation of the mechanism. 

 
Fig.6. Data filtering Sensor 2 
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The process of normalization of vibration signals obtained 

from Sensor 1 and Sensor 2 is shown in Figure 7. As can be 

seen from the graphs, the standardized signals retain the shape 

and dynamics of the original vibrations, but are scaled in such 

a way that the vibrations fit predominantly in the range from -

2 to +3. 

 

 
 

Fig.7. Normalization of Sensor 1 and Sensor 2 data 

To analyze the characteristics of vibration signals recorded 

from rotating equipment for the purpose of diagnosing the 

technical condition of bearings, a decomposition of the time 

series was performed (Figure 8). This approach allows 

identification of the structural components of the signal and 

better understand the nature of emerging deviations associated 

with potential faults. Data preprocessing includes filtering, 

handling missing values, feature extraction, signal processing, 

data normalization, data scaling, and selection of the optimal 

feature subset. Such decomposition functions as an adaptive 

filtering technique, enabling the isolation of the most 

informative signal components for further analysis. This 

enhances model resilience to noise and improves sensitivity to 

early indicators of system faults.  

 
Fig. 8. Normalization of Sensor 1 and Sensor 2 data. 

In particular, we considered a time series of vibration data 

obtained from a sensor installed near a bearing suspected to 

have mechanical damage (raceway wear). The time series plot 

includes the following components: 

Initial time series (Observed) - represents a sequence of 

recorded vibration data in a selected projection (usually along 

the X, Y or Z axes). For faulty bearings, such data may 

contain pulse bursts, increased amplitude and characteristic 

frequencies associated with the type of damage (e.g. BPFO, 

BPFI, BSF, FTF frequencies). 

Trend component (Trend) - reflects long-term changes in 

the overall vibration level that may be associated with 

progressive bearing wear, misalignment, center of mass 

displacement, or accumulation of mechanical faults. In the 

context of a defective bearing, the observed trend may 

indicate a gradual increase in vibration activity as the 

condition of the unit deteriorates. 

Seasonal component (Seasonal) - displays periodic 

oscillations associated with shaft rotation and regular passage 

of defective elements through the contact zone. For a 

damaged bearing, the seasonal component may include 

characteristic repetitive pulses corresponding to the 

frequencies of fault occurrence on the inner and outer rings. 

The frequency of these oscillations is often related to the 

calculated diagnostic frequencies of the bearing and can serve 

as a key sign of a fault. 

Residual component (Residual) – includes high-frequency 

noise and irregular fluctuations not explained by trend or 

seasonality. In the case of bearing faults, the residuals may 

contain sporadic shock signals due to initial stages of faults or 

unstable operation. Increased dispersion and amplitude of this 

component may be indicators of deterioration. 

Thus, the decomposition of time series within the 

framework of the tasks of diagnostics of vibration state of 

bearings allows: 

- localize typical characteristic fault frequencies (by 

seasonal component), 

- track fault progression (by trend), 

- analyze unstable noise characteristics (by residuals), 

which together contributes to accurate and timely 

detection of failures. 
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The classification results are presented in Table III. The 

obtained results can be used to evaluate the prediction 

accuracy of the classification algorithm. The accuracy value 

shows the ratio of the actual predicted true value to the total 

predicted true value. 

 
TABLE III  

CLASSIFICATION METRICS BY CLASS (PSO-SVM) 

Class Precision Recall F1-Score 

Cage_Fault_10 0.9359 0.9733 0.9542 

Cage_Fault_20 0.8955 0.8000 0.8451 
Cage_Fault_30 0.8462 0.8800 0.8627 

Inner_Race_10 1.0000 1.0000 1.0000 

Inner_Race_20 1.0000 1.0000 1.0000 

Inner_Race_30 0.9600 0.9600 0.9600 

Normal_20 0.9740 1.0000 0.9868 

Outer_Race_10 1.0000 0.9867 0.9933 
Outer_Race_20 0.8267 0.8267 0.8267 

Outer_Race_30 0.9474 0.9600 0.9536 

Accuracy - - 0.9387 

Macro Average 0.9386 0.9387 0.9383 

Weighted Average 0.9386 0.9387 0.9383 

 

The classification results of the PSO-SVM model into ten 

subtypes of bearing states. The model showed high values of 

metrics in all classes, including the critical states 

Inner_Race_10 and Outer_Race_10, for which the F1-score 

exceeds 0.99. The mean values (macro and weighted) of F1-

score exceed 0.93, which confirms the high stability of the 

model and the balanced classification. 

VI. CONCLUSION 

In this study, a diagnostic framework was developed that 

integrates machine learning algorithms, signal filtering 

techniques, and optimization methods to enable the early 

identification of faults in pump systems.  For this purpose, an 

experimental setup was designed and fabricated, taking into 

account all design parameters, in order to obtain data as close 

as possible to real industrial applications. The experimental 

data obtained was analyzed to separate serviceable and 

damaged bearings depending on the severity of the fault. 

During the experiments, the data were recorded under 

acoustically isolated conditions to eliminate the influence of 

external noise, and the experimental setup was securely 

mounted to minimize its own vibrations. The time domain 

signals were saved as images, which were subsequently 

converted into numerical format using the in-house software 

of the vibration analyzer. The data then underwent signal 

processing steps including filtering, interpolation of missing 

values, scaling and normalization. Statistical features were 

extracted from the signals, after which the most informative 

ones were selected on the basis of the correlation matrix. 

Correlation analysis showed a complete linear relationship 

between the root mean square (RMS) and standard deviation 

(correlation coefficient of 1.0), and a strong positive 

correlation between the crest factor and the skewness 

coefficient (ρ = 0.83). 

The generated feature matrix was used in the PSO-SVM 

model. The classification accuracy achieved using the support 

vector algorithm with parameter optimization by particle 

swarm method was 93.9%, which is almost 2% higher than 

the accuracy of SVM tuned using the classical grid search 

method with cross-validation. The improved quality of the 

proposed hybrid model is explained by its high robustness to 

noise in the training data and lower tendency to overtraining 

compared to traditional algorithms. 
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