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Use of Phasors in Nonlinear Analysis
Andrzej Borys and Zbigniew Zakrzewski

Abstract—In this paper, the well-known method of phasor anal-

ysis of linear ac circuits is extended in a rigorous mathematical
way to nonlinear analysis. This fills the lack of such a theory

in the literature. The results derived enable carrying out the

needed corrections of some results published recently that regard

harmonic distortion analysis of weakly nonlinear circuits.
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I. INTRODUCTION

I
N a whole series of papers [1]–[10] published in the last

decade, S. O. Cannizarro, G. Palumbo, S. Pennisi, and

M. Pennisi have created a new method of calculation of

harmonic distortion in mildly nonlinear circuits, and named it

“an approach exploiting the phasor notation in the frequency

domain” (see [10]). In all papers mentioned above, they have

argued that their approach is an alternative to the (too much

complicated in opinion of some researchers) Volterra series

method, traditionally used in nonlinear distortion analysis of

weakly nonlinear circuits [11]–[13] (we cite at this point only

a few papers, pioneers of application of the Volterra series

in the area of nonlinear circuits and systems). As it will be

evident in the course of this paper, their method is neither new

nor alternative to the Volterra series approach.

S. O. Cannizarro, G. Palumbo, S. Pennisi, and M. Pennisi

claim that the roots of their approach lie, first of all, in the

phasor analysis of linear circuits driven by ac signals (sinu-

soidal signals). This basic and nowadays elementary means

of analysis of ac circuits was found and developed mostly

by O. Heaviside and Ch. P. Steinmetz – two very famous

electrical engineers of that time – more than one hundred years

ago. Ch. P. Steinmetz has continuously promoted this method

[14] in the United States of America. In Poland, B. Konorski

has written an excellent textbook [15] promoting the above

approach.

Second, S. O. Cannizarro et al. say that their method relies

upon balancing the flows of harmonics in nodes of a nonlinear

circuit (or of its representing graph).

In none of the papers [1]–[10], the approach discussed

was developed systematically, thoroughly, consequently step-

by-step according to some mathematical rigour. This lack of

appropriate carefulness is the reason of occurrence of many

errors and faults, of different kinds, in the aforementioned

papers. For example, an operator “o” in [2] was introduced

fully ad hoc, without any explanation. In consequence, its
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descriptive definition in [2] is not correct; we show its in-

correctness in Section II.

The objective of this paper is to show how the phasors,

known from the classical phasor analysis developed for linear

ac circuits by O. Heaviside and Ch. P. Steinmetz, can be

applied and exploited correctly in the nonlinear analysis. The

detailed and complete derivations are presented here.

The remainder of the paper is organized as follows. In

Section II, basics of phasor analysis formulated for linear ac

circuits are recalled. In the next section, the rules, principles,

derivations, and expressions of this analysis are consequently

extended to the nonlinear analysis, using the needed math-

ematical rigour. The method of phasor nonlinear analysis is

summarized in the Section IV, by listing its main characteristic

features.

II. PHASOR PRINCIPLES IN ANALYSIS OF LINEAR AC

CIRCUITS

Before beginning discussion of the problem of correct

application of phasors in nonlinear analysis, we have first to

recall the needed here basics of phasor analysis formulated for

linear ac circuits. These fundamentals are summarized in what

follows.

We remind once again that the phasor analysis (called

also the symbolic analysis in some papers and textbooks), as

formulated by O. Heaviside and Ch. P. Steinmetz and exploited

widely afterwards, applies only to linear circuits driven by

sinusoidal signals. In this form, it is obviously not suitable

for nonlinear circuits. Our task in this paper is to extend this

approach to a class of nonlinear circuits called weakly (or

mildly) nonlinear ones [1]–[3], [11]–[13] driven by a single

sinusoidal (harmonic) signal.

We distinguish here between rotating (alternating) and non-

rotating (non-alternating) phasors. To this end, we define the

rotating phasor as

Aejωt = (|A|ejϕA)ejωt (1)

where its complex amplitude A = |A|ejϕA is in general

a complex number having magnitude |A| and phase ϕA in

polar representation and may depend upon ω; however, A is

assumed to be independent of the time variable t. The variable

ω = 2πf means an angular frequency with f used for denoting

the usual frequency variable. Moreover, j =
√
−1 in (1).

Note from (1) that when the value of time variable t in-

creases the phasor rotates counter-clockwise on the complex

z plane around the point (0,0) of this plane. In other words,

interpreting the phasor as a vector, we can say that the vector

given by (1) is such a vector of the constant length |A| that

rotates around the point (0,0) when the value of time variable t
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increases. Moreover, it is seen from (1) that Aejωt represents

a complex harmonic signal of frequency f . Note also that (1)

can be rewritten as

a(t) = |A|ej(ωt+ϕA) =

= |A|(cos(2πf + ϕA) + j sin(2πf + ϕA)) (2)

The form given by (2) and the relationships

Re{z} = (z + z∗)/2 and Im{z} = (z + z∗)/(2j), where

Re{z} and Im{z} mean the real and imaginary parts of

a complex number z, respectively, with “*” denoting the

complex conjugate value of z, allow to express the real ac

quantities (signals) |A| cos(2πf +ϕA) and |A| sin(2πf +ϕA)
through complex numbers (complex harmonic signals) of the

form given by (1).

Let us now divide the rotating phasor given by (1) by ejωt.

As a result, we get a non-rotating phasor. It is equal in this

case to the complex number A from (1).

Linear analog circuits consist of such components as lin-

ear resistors, inductors, capacitors, and linear amplifying (or

attenuating) elements. These components may be connected

to each other in different ways; the points of connection of

their terminals are called nodes. In these nodes, the signals are

added to or subtracted from. These operations (addition and

subtraction) do not change, however, the form of the rotating

phasors does because Aejωt±Bejωt = (A±B)ejωt holds. We

see that only their amplitudes change (in the above example,

from A or B to A ± B. In other words, the non-rotating

phasors, which are complex numbers independent of time, are

added to or subtracted from. And this is the basic principle of

the usage of phasors in the so-called phasor analysis (symbolic

analysis) of linear ac circuits.

Recapitulating the last point: analysis of a linear ac circuit

is in fact carried out exclusively with the use of non-rotating

phasors – some authors say that it is done in the so-called

frequency domain, jf = jω/(2π). This leads to getting the

resulting phasor in this domain. Obtaining the final result

in the time domain needs only one operation more, namely,

multiplication of the resulting non-rotating phasor by a com-

plex time function ej2πft. The latter operation gives the final

result, as a rotating phasor, in the time domain. Moreover, note

also that it follows from the above that we can interpret the

calculations using only the non-rotating phasors as constituting

a “purely” frequency domain method, but the one applying

rotating phasors as a “mixed” method that combines the

frequency domain with the time domain results.

We also remind in this section the fact that the phasor

analysis of linear ac circuits applies only to the steady state

of these circuits – the transient behaviour of these circuits

is omitted in this analysis. Furthermore, we remember the

standard and basic result saying that when a linear circuit is

driven by a signal of the form given by (1) (single complex

harmonic signal) then all the voltages and currents (signals)

in it have the same form: of a complex number (eventually

dependent upon f ) multiplied by a time function ej2πft. This

means that other steady state signal components of harmonics

different from f cannot appear in such a circuit. (Note that

this result was exploited in discussion of the previous point.)

The fact that “the steady state higher harmonic” cannot

be generated in linear ac circuits can be derived from their

linearity property. We show this now shortly, without going

into too many mathematical details. To this end, we recall

first that any of the possible basic linear components (as for

example, linear resistor, linear inductor, and linear capacitor)

as well as the whole circuit possess their descriptions in form

of the linear operator having (excluding possible pathological

cases [16], [17]) the one-dimensional convolution integral

representation as

y(t) =

∫

∞

−∞

h(τ)x(t − τ)dτ (3)

where y(t) and x(t) denote component (circuit) output and

input signal, respectively. Moreover, h(t) in (3) is the so-

called element (circuit) impulse response. Numerous examples

of it for such linear circuits as analog filters, amplifiers, etc.

can be found in papers and textbooks. On the other hand, as

the basic circuit elements: linear resistor, linear inductor, and

linear capacitor are concerned, we can express their impulse

responses as follows:

For resistor,

hR(t) = Rδ(t) (4a)

on assuming x(t) and y(t) in (3) to mean the current iR(t)
flowing through the resistor of resistance R and the voltage

across this resistor vR(t), respectively, or

hG(t) = Gδ(t) (4b)

when applying the opposite convention as above with regard to

x(t) and y(t), with G meaning the conductance of the resistor

considered, i.e. G = 1/R. δ(t) in (4a) and (4b) means the

Dirac impulse.

Further, for inductor,

hL(t) = Gδ′(t) (5a)

on assuming for this case x(t) and y(t) in (3) to mean the

current iL(t) flowing through the inductor of inductance L and

the voltage vL(t) across this inductor, respectively, or

h1/L(t) = L−11(t) =

{

1
L t ≥ 0
0 t < 0

(5b)

when applying the opposite convention as above with regard

to x(t) and y(t). δ′(t) in (5a) means the derivative of the Dirac

impulse δ(t). Moreover, 1(t) in (5b) stays for the Heaviside

unit step function.

And finally, for capacitor,

hC(t) = C−11(t) =

{

1
C t ≥ 0
0 t < 0

(6a)

on assuming for this case x(t) and y(t) in (3) to mean

the voltage vc(t) occurring between the capacitor terminals

(across the capacitor) and the current ic(t) flowing through

this capacitor of capacitance C, respectively, or

h1/C(t) = Cδ′(t) (6b)

when applying the opposite convention as above regarding the

meaning of x(t) and y(t).
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All the impulse responses given by (4a) – (6b) can be easily

derived using the following definition of the impulse response:

it is the response of an circuit element or a whole circuit to

the input signal in form of the Dirac impulse δ(t). So applying

this definition in the relations: vR(t) = RiR(t),

iR(t) = 1/RvR(t), vL(t) = LdiL(t)/dt,

iL(t) = 1/L

∫ t

−∞

vL(τ)dτ, vC(t) = 1/C

∫ t

−∞

iC(τ)dτ

and iC(t) = CdvC(t)/dt,

we get successively (4a) – (6b).

Second, let us now apply the input signal of the form given

by (1), i.e. x(t) = Xej2πft in (3). We arrive then at

y(t) =

∫

∞

−∞

h(τ)Xej2πf(t−τ)dτ =

= H(f)Xej2πft = H(f)x(t) (7a)

with H(f) being the Fourier transform of h(t), that is

H(f) =

∫

∞

−∞

h(τ)e−j2πfτdτ. (7b)

The result given by (7a) proves that an ac circuit and its

elements do not generate (steady state) signal components

possessing higher harmonics of the input frequency f .

Furthermore, (7a) shows that the non-rotating phasor in

phasor analysis of linear ac circuits is equal to the Fourier

transform of the corresponding impulse response multiplied

by the complex signal amplitude, with one possible exception

regarding the Heaviside unit step function 1(t) occurring in

(5b) and (6a). We will discuss this case separately. Before

doing this, however, we draw the reader’s attention to the

fact that H(f) itself (given by (7b)), multiplying the complex

amplitude X to result in the non-rotating phasor H(f)X , is

also called the non-rotating phasor in the literature. Therefore,

in this paper, to avoid any inconsequences, we distinguish

between the non-rotating phasors containing the signal com-

plex amplitudes of the first, second, and third harmonics, or

the products of these harmonics amplitudes – and those ones

dependent exclusively upon the parameters of circuit elements.

We name the first group the non-rotating phasors of first type

(being in fact the multidimensional Fourier transforms of the

amplitudes of harmonic components of currents and voltages

occurring in the circuit). And consequently, we name the non-

rotating phasors independent of the harmonics amplitudes, the

non-rotating phasors of the second type (being admittances,

impedances, transfer functions formulated in the frequency

domain, etc.). In what follows, the type of a given non-rotating

phasor will clearly follow from the context.

Using (7b) in particular cases of the impulse responses given

by (4a), (4b), (5a), and (6b), we get the well-known results: R,

G, j2πfL, and j2πfC, respectively. Furthermore, we arrive

at 1/(j2πfL)+ 1/2 · δ(f) and 1/(j2πfC)+ 1/2 · δ(f) in the

remaining cases of (5b) and (6a), respectively.

The non-rotating phasors for linear inductor and capaci-

tor are derived in the literature with the use of equations

vL(t) = LdiL(t)/dt and iC(t) = CdvC(t)/dt, respectively.

Note further that on assuming in these equations the following

form of the signal iL(t) or vC(t): Aej2πft (in accordance

with (1)), we get

vL(t) = L
d

dt
(Aej2πft) = j2πfLiL(t) (8a)

or

iC(t) = C
d

dt
(Aej2πft) = j2πfCvC(t). (8b)

Rearranging the signals (voltages and currents) in equations

(8a) and (8b), we can write

iL(t) =
1

j2πfL
vL(t) ⇒

iL(t)

vL(t)
=

1

j2πfL
(9a)

and

vC(t) =
1

j2πfC
iC(t) ⇒

vC(t)

iC(t)
=

1

j2πfC
(9b)

Assuming now that vL(t) and iC(t) in (9a) and (9b), re-

spectively, stand for the input signals, but the signals iL(t)
and vC(t) for the output ones, it follows that the corre-

sponding non-rotating phasors are equal to 1/(j2πfL) and

1/(j2πfC), respectively. So they differ from those derived

using the convolution integral representation by a component

1/2 · δ(t). However, see that the latter component equals zero

for frequencies f 6= 0. Hence, in fact, the previous and the

latter expressions are identical for all the frequencies different

from f = 0 (direct current, dc). But for analyzing dc circuits,

we do not need to use phasor method. Then, we can use one of

the approaches applicable to purely resistive circuits (in which,

if capacitors occur, they are treated as open circuit elements,

but inductors as short-circuited elements).

III. BASIC RULES FOR USE OF PHASORS IN ANALYSIS OF

NONLINEAR CIRCUITS

It is well known that a natural extension of the

one-dimensional convolution integral (3) to description of

the steady state of nonlinear circuits is the Volterra

series [11]–[13]

y(t) = y(1)(t) + y(2)(t) + y(3)(t) + · · · =

=

∫

∞

−∞

h(1)(τ)x(t − τ)dτ+

+

∫

∞

−∞

∫

∞

−∞

h(2)(τ1, τ2)x(t− τ1)x(t− τ2)dτ1dτ2+

+

∫

∞

−∞

∫

∞

−∞

∫

∞

−∞

h(3)(τ1, τ2, τ3)·

·x(t− τ1)x(t− τ2)x(t− τ3)dτ1dτ2dτ3 + . . . (10)

In (10), y(t) and x(t) mean the output and input signal,

respectively, at a nonlinear circuit. Moreover, the terms y(1)(t),
y(2)(t), y(3)(t), and so on, which are components of y(t),
are called the circuit partial responses of the corresponding

orders: first, second, third, and of higher orders, accordingly.

Furthermore, h(1)(τ), h(2)(τ1, τ2), h
(3)(τ1, τ2, τ3), and so on,

are, respectively, the first order, second order, third order, and

so on, nonlinear impulse responses of the circuit considered.

Finally, we remark that y(1)(t) and h(1)(τ) are also called
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circuit’s linear partial response and its linear impulse response,

respectively.

For the so-called weakly (mildly) nonlinear circuits, the

series given by (10) is truncated to the first three components.

Note that the above constitutes, at the same time, the definition

of the aforementioned class of circuits.

Observe further that the truncated Volterra series similarly

as (3), which was assumed in the previous section to describe

any linear circuit component or whole linear circuit, can

be applied for description of all possible nonlinear circuit

elements and whole nonlinear circuits (of the class defined

above). Therefore, in what follows, we will restrict ourselves

to just this general form of description.

Applying now the input signal x(t) = Xej2πft in the

truncated to the first three components Volterra series given

by (10), we arrive at

y(t) ∼= ŷ(t) = y(1)(t) + y(2)(t) + y(3)(t) =

=

∫

∞

−∞

h(1)(τ)Xej2πf(t−τ)dτ+

+

∫

∞

−∞

∫

∞

−∞

h(2)(τ1, τ2)X
2ej2πf(t−τ1)ej2πf(t−τ2)dτ1dτ2+

+

∫

∞

−∞

∫

∞

−∞

∫

∞

−∞

h(3)(τ1, τ2, τ3)·

·X3ej2πf(t−τ1)ej2πf(t−τ2)ej2πf(t−τ3)dτ1dτ2dτ3 =

= Xej2πft ·
∫

∞

−∞

h(1)(τ)e−j2πfτdτ+

+X2ej2π(2f)t·
∫

∞

−∞

∫

∞

−∞

h(2)(τ1, τ2)e
−j2πfτ1e−j2πfτ2dτ1dτ2+

+X3ej2π(3f)t ·
∫

∞

−∞

∫

∞

−∞

∫

∞

−∞

h(3)(τ1, τ2, τ3)·

·e−j2πfτ1e−j2πfτ2e−j2πfτ3dτ1dτ2dτ3 (11)

The symbol “ˆ” above y(t) in (11) means operation of trunca-

tion of the Volterra series given by y(t) to only the first three

components (in other words, taking into account only the first

three orders of nonlinearity in a circuit).

Introducing then the following multidimensional Fourier

transforms (defined for example in [13]) of the nonlinear

impulse responses of the first, second, and third order, h(1)(τ),
h(2)(τ1, τ2), and h(3)(τ1, τ2, τ3), respectively

H(1)(f) =

∫

∞

−∞

h(1)(τ)e−j2πfτdτ (12a)

H(2)(f, f) =

∫

∞

−∞

∫

∞

−∞

h(2)(τ1, τ2)e
−j2πfτ1e−j2πfτ2dτ1dτ2

(12b)

H(3)(f, f, f) =

∫

∞

−∞

∫

∞

−∞

∫

∞

−∞

h(3)(τ1, τ2, τ3)·

·e−j2πfτ1e−j2πfτ2e−j2πfτ3dτ1dτ2dτ3 (12c)

into (11), we obtain

ŷ(t) = H(1)(f)Xej2πft +H(2)(f, f)X2ej2π(2f)t+

+H(3)(f, f, f)X3ej2π(3f)t =

= H(1)(f)x(t) +H(2)(f, f)(x(t))2+

+H(3)(f, f, f)(x(t))3. (13)

The result given by (13) shows that the resulting rotating

phasor ŷ(t) in the nonlinear analysis using phasors (and the

Volterra series that is truncated to first three components) is

a sum of three rotating phasors y(1)(t), y(2)(t), and y(3)(t),
which rotate with the different angular frequencies ω = 2πf ,

2ω = 2π(2f), and 3ω = 2π(3f), respectively. Further,

the non-rotating phasors associated with the rotating ones

mentioned above are equal to H(1)(f)X , H(2)(f, f)X2, and

H(3)(f, f, f)X3, respectively.

Let us rewrite now (13) in the following form

ŷ(t) = Y (f, t) = [H(1)(f) +H(2)(f, f)(x(t))+

+H(3)(f, f, f)(x(t))2]x(t). (14)

In (14), Y (f, t) is used to write in a shorter form the

following: H(1)(f)+H(2)(f, f)(x(t))+H(3)(f, f, f)(x(t))2.

Observe that the expression (14) allows us to interpret the

resulting rotating phasor ŷ(t) as the rotating phasor x(t)
modulated in amplitude by a time function dependent upon

x(t). This evidently results from the form of Y (f, t) in (14).

However, the above observation has no practical importance

for carrying out calculations.

In papers [1]–[10], the coefficients H(1)(f), H(2)(f, f) and

H(3)(f, f, f) occurring in the representation given by (13)

have been named nonlinear coefficients, without identifying

any connection with the Volterra series. Here, we see that

they are multidimensional Fourier transforms of the nonlinear

impulse responses of the corresponding orders. These trans-

forms are called also (see, for example [13]) the nonlinear

transfer functions of the corresponding orders (of the first

(representing the linear transfer function), second, and third

order, respectively).

Notational remark: In [1]–[10], the nonlinear coeffi-

cients H(1)(f) = a1(jω), H(2)(f, f) = a2(jω) and

H(3)(f, f, f) = a3(jω) with jω = 2πf have been denoted as

indicated (i.e. as a1(jω), a2(jω), and a3(jω), successively).

That is as functions of only one variable ω (or f ). This

led, however, to occurrence of some errors in calculations

presented in [1]–[10]: for example in equation (19) in [1]

a22(jω) stands for H(2)(f, f) · H(2)(f, 2f). It was assumed

therein that the following holds: H(2)(f, f) = H(2)(f, 2f),
but obviously generally this is not true. So the aforementioned

notational simplification, as leading to errors, should not be

exploited in calculations.

The general relation (13) derived for the nonlinear phasor

analysis of ac circuits is not only counterpart of the cor-

responding relation (7) in the phasor analysis of linear ac

circuits. Once again, we point out that it holds exclusively

when the input signal applied to the given circuit element or

the whole circuit is of the form x(t) = Xej2πft (a complex

single harmonic signal). However, in nonlinear ac circuits, as

it is well-known (see, for example, [13], [18]), the signal

components at harmonics 2f , 3f , and higher ones of the
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signal x(t) = Xej2πft occur at circuit elements, too. Then,

obviously, (13) cannot be used and we need another formula.

In what follows now, we derive this formula that will constitute

second counterpart of (7) needed in the phasor analysis of

nonlinear ac circuits. To this end, we assume the following

form of the signal x(t)

x(t) = Xfe
j2πft +X2fe

j2π(2f)t +X3fe
j2π(3f)t (15)

to apply in the truncated series (10). In (15), Xf , X2f , and

X3f denote the complex amplitudes of the signal components

at harmonics f , 2f , and 3f , respectively. Moreover, note that

by restricting ourselves in (15) to only these harmonics, we

neglect all the higher (than 3f ) ones in the calculations – as

it has been done in papers [1]–[10].

Introducing (15) into the truncated series of (10) gives

ŷ(t) = y(1)(t) + y(2)(t) + y(3)(t) (16a)

with

y(1)(t) = H(1)(f)Xfe
j2πft +H(1)(2f)X2fe

j2π(2f)t+

+H(1)(3f)X3fe
j2π(3f)t (16b)

y(2)(t) = H(2)(f, f)X2
f e

j2π(2f)t + 2H(2)(f, 2f)·

·XfX2fe
j2π(3f)t + [2H(2)(f, 3f)XfX3f+

+H(2)(2f, 2f)X2
2f ]e

j2π(4f)t + . . . (16c)

y(3)(t) = H(3)(f, f, f)X3
fe

j2π(3f)t+

+3H(3)(f, f, 2f)X2
fX2fe

j2π(4f)t + . . . (16d)

where it has been assumed that the nonlinear trans-

fer functions are symmetric ones (that is, for example,

H(2)(f, 2f) = H(2)(2f, f), and so on; for more details re-

garding this issue, see, for instance, [13]).

Observe that the resulting signal given by (16) contains now

new harmonics 4f and higher ones, which do not occur in

the input signal (15). This is opposite to the previous case

of (11), where no new harmonics were generated. The signal

components at the aforementioned harmonics are neglected in

the method presented in [1]–[10]. In other words, the following

expressions are used therein instead of (16c) and (16d)

ỹ(2)(t) = H(2)(f, f)X2
f e

j2π(2f)t + 2H(2)(f, 2f)·

·XfX2fe
j2π(3f)t (17a)

and

ỹ(3)(t) = H(3)(f, f, f)X3
fe

j2π(3f)t. (17b)

The symbol “∼” in (17a) and (17b) means operation of

neglecting the higher harmonics than 3f in the corresponding

partial responses y(i)(t) (here i = 2 or 3).

Equations (16a) – (16d) describe and define at the same time

correctly the operations that are understood under the operator

“o” introduced in a descriptive way in [2]. The definition of

the operator “o” in [2] is incorrect. We show this using the

same example as that which was given by S. O. Cannizarro,

G. Palumbo, and S. Pennisi in [2] (beneath equations (11)

and (12) therein) for illustration of their descriptive definition

of “o”. To this end, let us formulate the aforementioned exam-

ple using our notation as: calculate ŷ(t) = y(1)(t)+y(2)(t) for

the input signal x(t) = Xfe
j2πft+X2fe

j2π(2f)t. Note that to

get a solution to this problem, we can use expressions (16b),

(16c), and (16d) already derived by substitution X3f ≡ 0 and

H(3)(·, ·, ·) ≡ 0 therein. This leads to

ŷex(t) = XfH
(1)(f)ej2πft + [X2fH

(1)(2f)+

+X2
fH

(2)(f, f)]ej2π(2f)t + 2XfX2fH
(2)(f, 2f)·

·ej2π(3f)t +X2
2fH

(2)(2f, 2f)ej2π(4f)t. (18)

Evidently, the multipliers of the complex function ej2π(3f)t

in (18) and in the corresponding expression derived in [2]

differ from each other.

For those who want to avoid the use of Volterra series

in nonlinear analysis exploiting phasors, let us explain the

problem discussed in the above example in another way. So to

this end, let us consider a simple nonlinear capacitor described

by the relation

iC(t) =
dq(t)

dt
=

d

dt
(a1vC(t) + a2(vC(t))

2) (19a)

where iC , q, and vC are the current flowing through, the charge

on, and the voltage across the capacitor, respectively. The

assumed dependence of q upon vC in (19a) is q = a1vC+a2v
2
C

with a1 and a2 being constant coefficients in this polynomial

expansion (a1 = C is called the capacitor capacitance C).

Further, assume that the voltage across the capacitor is given

by

vC(t) = Xfe
j2πft +X2je

j2π(2f)t (19b)

Introducing (19b) into (19a) gives

iC(t) = Xf j2πfa1e
j2πft + [X2f j2π(2f)a1+

+X2
f j2π(2f)a2]e

j2π(2f)t + 2XfX2f j2π(3f)a2·

·ej2π(3f)t +X2
2f j2π(4f)a2e

j2π(4f)t. (20)

Compare now the coefficient j2π(3f)a2 multiplying

2XfX2fe
j2π(3f)t in (20) with the corresponding

coefficient derived in [2], which will be equal to

[j2π(2f)a2 + j2π(4f)a2] = j2π(2f + 4f)a2 = j2π(6f)a2
in the case of our capacitor. Because evidently

j2π(3f)a2 6= j2π(6f)a2, this shows that the definition

of the operator “o” in [2] is incorrect.

By the way, observe that we can identify the corresponding

(nonlinear) non-rotating phasors with the nonlinear transfer

functions describing our nonlinear capacitor considered in the

frequency domain – by comparison of (18) with (20). Then,

we get

H(1)(f) = j2πfa1 (21a)

and

H(2)(f, f) = j2π(f + f)a2 = j2π(2f)a2. (21b)

Further, note in (21a) that the function H(2)(f, f) of two

variables is described by an expression in which these two
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variables do not occur “separately”, but they are added to each

other. This property can be generalized for mildly nonlinear

RLC circuits including nonlinear amplifiers – see for example

[13], [18].

Obviously, the phasors can be introduced into the nonlinear

analysis of ac circuits without referring to such notions as

the Volterra series and multidimensional Fourier transforms.

Then, similarly as in the usual phasor analysis of linear ac

circuits (in form as developed by Ch. P. Steinmetz), we do

not need to refer to the convolution integral and Fourier

transform. In this case, we exploit the so-called constitutive

relations [19] defining the basic circuit elements (not any

other descriptions of circuit elements!) Now, to illustrate this

point in more detail, let us consider once again an example

of the nonlinear capacitor described by the relation (19a)

defining the constitutive equation of this circuit element. So,

according to the basic principle of the phasor method, we

apply vC(t) = Xfe
j2πft in (19a). This results in

iC(t) = j2πfa1Xfe
j2πft + j2π(2f)a2X

2
fe

j2π(2f)t =

= j2πfa1vC(t) + j2π(2f)a2(vC(t))
2 =

= Y
(1,a)
C (f)vC(t) + Y

(2,a)
C (2f)(vC(t))

2 (22)

where Y
(1,a)
C (f) = j2πfa1 and Y

(2,a)
C (2f) = j2π(2f)a2

are the non-rotating phasors constituting the coefficients of

the rotating phasors Y
(1,a)
C (f)vC(t) and Y

(2,a)
C (2f)(vC(t))

2,

respectively. The latter ones rotate with the corresponding

frequencies f and 2f . So, because of the above facts, we

can name Y
(1,a)
C (f) and Y

(2,a)
C (2f) the capacitor phasors

of the first and second order, accordingly. Moreover, we put

additionally the letter “a” in the superscripts of these phasors

to indicate the fact that they are calculated for the input signal

being a single complex harmonic function Xfe
j2πft. Thereby,

we distinguish this case from another one, “b”, standing for the

calculations with the circuit input signal consisting of a sum

of complex harmonic signals at frequencies f , 2f , and 3f .

Note that, as it was already pointed out, the case “b” takes

place, when a circuit element is not directly driven by an

input signal applied to the circuit. That is it is an internal

nonlinear circuit element, and therefore, driven by a signal

having form of a sum of harmonics of the circuit input signal

(including the first one). In what follows now, we explain this

case on an example of our nonlinear capacitor discussed just

before, restricting ourselves to taking into account only two

first harmonics as assumed in (19b).

The result of substitution of (19b) into the capacitor explicit

constitutive relation (19a) is given by (20). Observe that the

signal harmonics 3f and 4f occur in (20), but they are absent

in the signal given by (19b). Therefore, we truncate (neglect)

them (this is a standard operation performed in the method

presented in [1]–[10]). As a result, we get

ĩC(t) = j2πfa1Xfe
j2πft + [j2π(2f)a1X2f+

+j2π(2f)a2X
2
f ]e

j2π(2f)t = j2πfa1Xfe
j2πft+

+
[

j2π(2f)a1
X2f

X2
f

+ j2π(2f)a2

]

(Xfe
j2πft)2 =

= Y
(1,b)
C (f)(Xfe

j2πft) + Y
(2,b)
C (2f)(Xfe

j2πft)2 (23)

where the non-rotating phasors Y
(1,b)
C (f) and Y

(2,b)
C (2f) are

the counterparts in this case “b” of the phasors Y
(1,a)
C (f)

and Y
(2,a)
C (2f) occurring in (22), respectively. Moreover,

comparison of (22) with (23) shows that the following relations

hold

Y
(1,b)
C (f) = Y

(1,a)
C (f) = j2πfa1 (24a)

and

Y
(2,b)
C (2f) = Y

(1,a)
C (2f)

X2f

X2
f

+ Y
(2,a)
C (2f) =

= j2π(2f)a1
X2f

X2
f

+ j2π(2f)a2. (24b)

Concluding and generalizing the above example, we say

that having a unique constitutive relation for a given nonlinear

circuit element, we derive from it two different phasor-based

descriptions (compare (22) with (23) and see (24b)) for

the nonlinear analysis in the frequency domain. Their usage

depends upon the place where the given element occurs in

the circuit – with respect to the placement of the circuit input

signal.

By the way, observe also that the derivations presented

up to now show that not only the use of phasors but also

such the tools as Volterra series and multidimensional Fourier

transforms make the nonlinear analysis better understandable

and more transparent.

The descriptions derived in (22) and (23), and called the

input-output and in-network representations, respectively, are

illustrated in Fig. 1.

Finally, note that Fig. 1, and eqs. (22) and (23) show clearly

that the input-output representation given by (22) cannot be

treated as a constitutive equation for the derivation of the in-

network representation expressed by (23).

After finishing discussion of the phasor representations of

nonlinear elements, let us consider now formulation of circuit

equations with the use of these descriptions. There exist many

possibilities for such formulations; basically, they can be put

into two groups: on one side those using matrix formalism,

as for example, exploiting admittance, impedance, or (mixed)

modified nodal formulation [18], [20], and on the other side

such that apply operators working on signals and graphs. The

method presented in [1]–[10] uses the second approach, and

in what follows, we refer to it.

First, observe that the form of the non-rotating phasors as

Y
(1,a)
C and Y

(2,a)
C in (22), and even the complex-amplitude

dependent Y
(2,b)
C in (23) are not suitable for formulation of the

circuit equations. Exploiting once again the nonlinear capacitor

example, we show how equations (22) and (23) should be

reformulated for the aforementioned needs, namely as

iC(t) = I
(1,a)
C ej2πft + I

(2,a)
C ej2π(2f)t (25a)

in the case of (22), with the non-rotating phasors de-

pendent now upon the signal complex amplitudes (that

is having the form of those of first type – according

to the definition introduced in Section II). So, they will
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Fig. 1. Illustration of the derivation of the input-output (eq. (22)) and in-

network (eq. (23)) representations from the explicit constitutive equation of
a nonlinear capacitor given by (19a).

be then defined as I
(1,a)
C = j2πfa1Xf = Y

(1,a)
C (f)Xf and

I
(2,a)
C = j2π(2f)a2X

2
f = Y

(2,a)
C (2f)X2

f . And, similarly in the

case of (23), we will have

ĩC(t) = I
(1,b)
C ej2πft + I

(2,b)
C ej2π(2f)t (25b)

with the non-rotating phasors reformulated for the

case “b”, given by I
(1,b)
C = j2πfa1Xf = Y

(1,b)
C (f)Xf

and I
(2,b)
C = j2π(2f)[a1X2f + a2X

2
f ] = Y

(2,b)
C (2f)X2

f . At

this point, we remind also that the number 1 in the superscript

of I
(1,b)
C , and the number 2 in the superscript of I

(2,b)
C stay

for the orders of these phasors. (Caution: Note that, according

to the definitions introduced, the type and order of a phasor

do mean two different things!)

Now, to illustrate the basic principles of the “operator-

graph” method of formulation of circuit equations with the

use of non-rotating phasors of the first and second type,

consider a scheme of a simple nonlinear circuit shown in

Fig. 2, which consists of a nonlinear capacitor (NC) and

a nonlinear conductor (NG) connected in parallel and driven

by an independent current source ISe
j2πft.

The currents ii(t), iC(t) and iG(t), and the voltage

v(t) = vC(t) = vG(t) are defined in Fig. 2. And, let the circuit

input and output signals be ii(t) and iG(t), respectively.

Further, the balance of currents at the circuit node expresses

as

ii(t) = iC(t) + iG(t) (26)

Because the circuit analysed is nonlinear, the currents iC(t)
and iG(t) possess also the second and third harmonic compo-

nents. Therefore, using (26), we write

ISe
j2πft + 0 · ej2π(2f)t + 0 · ej2π(3f)t =

Fig. 2. A simple nonlinear circuit consisting of two nonlinear elements:
capacitor and conductor connected in parallel.

= ICfe
j2πft + IC2fe

j2π(2f)t + IC3fe
j2π(3f)t+

+IGfe
j2πft + IG2fe

j2π(2f)t + IG3f e
j2π(3f)t (27)

where ICf , IC2f , IC3f mean the amplitudes of the first,

second, and third harmonic component, respectively, of the

current iC(t). The similar regards IGf , IG2f , and IG3f , being

the corresponding harmonic amplitudes in iG(t). (Note that

the notations ICf , IGf , IC2f , IG2f , IC3f and IG3f correspond

to Xf , X2f and X3f used in a more general context in the

previous derivations.)

Equating then to each other the amplitudes standing by the

corresponding exponents ej2πft, ej2π(2f)t and ej2π(3f)t on

both sides of (27), we get

IS = ICf + IGf (28a)

0 = IC2f + IG2f (28b)

0 = IC3f + IG3f . (28c)

Note that eqs. (28a-c) describe the balance of harmonics at

the node of circuit of Fig. 2 – in terms of amplitudes of these

harmonics.

In the next step, note that the amplitudes of harmonics

occurring in eqs. (28a-c) can be expressed by the non-rotating

phasors of the first type associated with the nonlinear capacitor

and nonlinear conductor. Because of the fact that the voltage

v(t), being the terminal input signal for NC and NG, is not

equal to the circuit input signal ISe
j2πft, we will use the

second rule derived previously (denoted as the case “b”) for

these phasors. So, applying this, we can rewrite eqs. (28a-c)

as

IS = I
(1,b)
C + I

(1,b)
G (29a)

0 = I
(2,b)
C + I

(2,b)
G (29b)

0 = I
(3,b)
C + I

(3,b)
G . (29c)

At this point, we remind that the numbers 1, 2, and 3 denoting

the corresponding orders of the phasors in eqs. (28a-c) mean

that these phasors stand (as amplitudes) by the complex

functions ej2πft, ej2π(2f)t and ej2π(3f)t, respectively.
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In an example of circuit of Fig. 2, we assume that the

element NC is described by the constitutive equation (19a)

and the element NG by the following one

iG = g1vG + g2v
2
G. (30)

In both eqs. (19a) and (30), the first and second order (only)

nonlinearities are incorporated in.

Adding now the additional component X3fe
j2π(3f)t in

(19b), renaming the amplitudes Vf = Xf , V2f = X2f , and

V3f = X3f in the resulting equation, introducing it afterwards

in (19a), and finally restricting the procedure to consideration

of only the first three harmonics, we arrive at

ĩC(t) = j2πfa1Vfe
j2πft + [j2π(2f)a1V2f+

+j2π(2f)a2V
2
f ]e

j2π(2f)t + [j2π(3f)a1V3f+

+2j2π(3f)a2VfV2f ]e
j2π(3f)t (31)

Note that using the non-rotating phasors of the second type,

we can rewritre (31) as

ĩC(t) = Y
(1)
C (f)Vf e

j2πft + [Y
(1)
C (2f)V2f+

+Y
(2)
C (2f)V 2

f ]e
j2π(2f)t + [Y

(1)
C (3f)V3f+

+2Y
(2)
C (3f)VfV2f ]e

j2π(3f)t (32a)

with

Y
(1)
C (f) = Y

(1,a)
C (f) = j2πfa1 (32b)

and

Y
(2)
C (2f) = Y

(2,a)
C (f) = j2π(2f)a2 (32c)

Y
(1)
C (2f), Y

(1)
C (3f) and Y

(2)
C (3f) in (32a) are defined by

(32b) and (32c) with another frequency arguments 2f , 3f ,

and 3f , respectively. Note that we have now dropped the

indication of the case “a” in Y
(1,a)
C and Y

(2,a)
C , shortened

to Y
(1)
C and Y

(2)
C , for simplicity. Moreover, eqs. (23) and

(24b) show that introduction of a special kind of non-rotating

phasors of second type for the second case “b” is useless

because, as for example Y
(2,b)
C in (24b) is still dependent upon

signal amplitudes. We will use the above simplified notation

consequently in what follows.

Eq. (31) or (32a) allow us to find the expressions for the

non-rotating phasors of the first type versus the phasors of the

second type for the NC in Fig. 2. So, we identify in this case

I
(1,b)
C = j2πfa1Vf = Y

(1)
C (f)Vf (33a)

I
(2,b)
C = j2π(2f)a1V2f + j2π(2f)a2V

2
f =

= Y
(1)
C (2f)V2f + Y

(2)
C (2f)V 2

f (33b)

I
(3,b)
C = j2π(3f)a1V3f + 2j2π(3f)a2VfV2f =

= Y
(1)
C (3f)V3f + 2Y

(2)
C (3f)VfV2f . (33c)

Proceeding now for NG in Fig. 1 similarly as for NC above,

we arrive at the following counterparts of (31), (32a-c), and

(33a-c)

ĩG(t) = g1Vfe
j2πft + [g1V2f + g2V

2
f ]e

j2π(2f)t+

+[g1V3f + 2g2VfV2f ]e
j2π(3f)t (34)

ĩG(t) = Y
(1)
G (f)Vfe

j2πft + [Y
(1)
G (2f)V2f+

+Y
(2)
G (2f)V 2

f ]e
j2π(2f)t + [Y

(1)
G (3f)V3f+

+2Y
(2)
G (3f)VfV2f ]e

j2π(3f)t (35a)

with

Y
(1)
G (·) = Y

(1,a)
G (·) = g1 (35b)

and

Y
(2)
G (·) = Y

(2,a)
G (·) = g2 (35c)

and

I
(1,b)
G = g1Vf = Y

(1)
G (f)Vf (36a)

I
(2,b)
G = g1V2f + g2V

2
f = Y

(1)
G (2f)V2f + Y

(2)
G (2f)V 2

f (36b)

I
(3,b)
G = g1V3f + 2g2VfV2f = Y

(1)
G (3f)V3f+

+2Y
(2)
G (3f)VfV2f . (36c)

Substituting then (33a-c) and (36a-c) into (29a-c), and

solving for Vf , V2f , and V3f , we obtain

Vf =
IS

g1 + j2πfa1
(37a)

V2f = −I2S
g2 + j2π(2f)a2

(g1 + j2π(2f)a1)(g1 + j2πfa1)2
(37b)

V3f = I3S
2(g2 + j2π(2f)a2)(g2 + j2π(3f)a2)

(g1 + j2π(3f)a1)(g1 + j2π(2f)a1)(g1 + j2πfa1)2
(37c)

Finally, using Vf = VCf = VGf , V2f = VC2f = VG2f , and

V3f = VC3f = VG3f , given by (37a-c) in (33a-c) and (36a-c),

we can express, respectively, the amplitudes of the first three

harmonic components of the currents iC(t) (i.e. ICf , IC2f ,

and IC3f ) and iG(t) (i.e. IGf , IG2f , and IG3f ) occurring in

Fig. 2 versus the amplitude IS of the input current signal.

Moreover, it follows from the form of Vf , V2f , and V3f in

(37a-c) that they are non-rotating phasors of the first type for

the case “a” with respect to the input signal ISe
j2πft. That is

we write Vf = V (1,a), V2f = V (2,a), and V3f = V (3,a). At the

same time, they constitute the non-rotating phasors of the first

type for the case “b”, too. However, in the latter case in other

equations having the form as, for example, eqs. (33a-c), they

play such a role with respect to the terminal signals ĩC(t) and

ĩG(t) consisting of the first three harmonic components having

the amplitudes, say, ICf , IC2f , IC3f and IGf , IG2f , IG3f ,

respectively. This can be easily checked using eqs. (33a-c)

together with the relation inverting (19a) and (36a-c) together

with the relation inverting (30), respectively.

The non-rotating phasors of the second type can be used in

the nonlinear phasor analysis, similarly as in the linear case, to

construct equivalent schemes of parts of a circuit consisting of

interconnected basic circuit elements. And we illustrate now

this point, once again, on an example of the circuit of Fig. 2.

For a parallel connection of NC and NG in this figure, we

build an equivalent scheme. So, then, Fig. 2 can be redrawn

in a simplified form as shown in Fig. 3.
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Fig. 3. A simplified form of the circuit of Fig. 2 with the parallel connection

of NC and NG replaced by an equivalent element NY.

Observe that the amplitudes of the first three harmonic com-

ponents I
(1,b)
Y , I

(2,b)
Y , and I

(3,b)
Y of the current iY (t) flowing

through the equivalent element NY (nonlinear admittance) in

Fig. 3 can be expressed, using (33a-c) and (36a-c), as

I
(1,b)
Y = I

(1,b)
C + I

(1,b)
G = (g1 + j2πfa1)Vf (38a)

I
(2,b)
Y = I

(2,b)
C + I

(2,b)
G = (g1 + j2π(2f)a1)V2f+

+(g2 + j2π(2f)a2)V
2
f (38b)

I
(3,b)
Y = I

(3,b)
C + I

(3,b)
G = (g1 + j2π(3f)a1)V3f+

+2(g2 + j2π(3f)a2)VfV2f . (38c)

Comparison of eqs. (38a-c) with eqs. (33a-c) or (36a-c) shows

that the expressions

Y
(1)
Y (f) = g1 + j2πfa1 = Y

(1)
G (f) + Y

(1)
C (f) (39a)

and

Y
(1)
Y (2f) = g2 + j2π(2f)a2 = Y

(2)
G (2f) + Y

(2)
C (2f) (39b)

play analogous role as Y
(1)
G (f) and Y

(2)
G (2f) or Y

(1)
C (f) and

Y
(2)
C (2f) in (33a-c) or (36a-c), respectively. These expressions

describe fully the equivalent nonlinear element NY. Further-

more, they are constructed using exclusively the phasors of the

second type describing NG and NC. This is their characteristic

feature.

Observe that the non-rotating phasors of the second type

Y
(3)
G (3f) and Y

(3)
C (3f) are equal to zero in the example

considered, and consequently Y
(3)
Y (3f) ≡ 0. This follows

from the fact that the coefficients: a3 ≡ 0 in (19a) and g3 ≡ 0
in (30); that is the highest order of nonlinearity in NC and NG

of our example is restricted to two. Consequently, the highest

order of the nonzero non-rotating phasors Y
(i)
G (·) and Y

(i)
C (·),

i = 1, 2, 3, . . . , is equal to two.

The above fact can be generalized as follows: An order of

a given non-rotating phasor of the second type is equal to

the order of nonlinearity described by this phasor. Opposite to

this, from the previous derivations, it follows that the orders

of the non-rotating phasors of the first type provide other

information. They are tightly associated with the orders of

harmonics in such a way that the non-rotating phasor of the

first type and of the i-th order must be multiplied by ej2π(if)t

to give the complex harmonic signal of frequency if .

IV. SUMMARY

In this paper, a thorough and mathematically rigorous

treatment of the phasor use in nonlinear analysis has been

presented. This fills the lack of such a theory in the literature;

thanks to it some partly incorrect derivations occurring in

papers [1]–[10] can be now corrected. The characteristic

features of this theory are as follows:

1) The fact that we can distinguish between two kinds

of non-rotating phasors: dependent and independent of

amplitudes of the signal harmonic components and/or

of their products allows us to interpret their orders

in the nonlinear analysis as associated strictly with

the corresponding orders of harmonics and orders of

nonlinearity, respectively. We refer to these phasors as

to the first and second type ones, accordingly.

2) Two means of “transferring harmonics” from a terminal

(port) input to terminal (port) output or from a whole

circuit input to its output refer exclusively to the non-

rotating phasors of the first type. These two means

are characterized by different calculation rules, depicted

here as the cases “a” and “b”.

3) Balance of harmonics is carried out at nodes of a circuit

or of its representing graph with the use of non-rotating

phasors of the first type, as for example shown in

equations (29a-c).

4) We express phasors of the first type versus phasors of

the second type. We use then, consequently, a certain

very important convention; we explain it on an example:

Take into account Y
(2)
C (3f). In this phasor, the number

2 means the order of nonlinearity dealt with, but the

argument 3f denotes harmonic frequency for which this

phasor is calculated.

5) As shown, the balance of harmonics relies upon the use

of non-rotating phasors of the first type. But calculation

of the equivalent schemes of the interconnected circuit

nonlinear basic elements needs the use of only non-

rotating phasors of the second type.
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