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Abstract—We derive an efficient algorithm for the steady state 
analysis of fibre lasers operating under cascade pumping scheme 
by combining the shooting method with the Newton-Raphson 
method. We compare the proposed algorithm with the two 
standard algorithms that have been used so far in the available 
literature: the relaxation method and the coupled solution 
method. The results obtained show that the proposed shooting 
method based algorithm achieves much faster convergence rate 
at the expense of a moderate increase in the calculation time.  It is 
found that a further improvement in the computational efficiency 
can be achieved by using few iterations of the relaxation method 
to calculate the initial guess for the proposed shooting method 
based algorithm. 
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I. INTRODUCTION 
IBRE lasers have many characteristics that make them 
distinct from other types of light sources, i.e. hih 

brightness, wide tune-ability, ease of beam delivery and 
robustness. This makes them desirable in many applications. 
Commercially available silica glass fibre lasers cover 
wavelengths within the visible and near infrared range up to 2 
µm. The longer wavelengths cannot be achieved in a silica 
glass host due to the depopulation of the upper lasing level via 
multi-phonon non-radiative transitions. In order to reach out to 
mid-infrared (MIR) wavelength region an application of a 
glass host with lower maximum phonon energy is necessary. 
So far commercially available ZBLAN fibres doped with 
erbium have been used successfully to realise lasers with 
operating wavelengths up to 3.9 µm [2]. Host glasses that 
would allow for the achievement of longer wavelengths are 
developed in the research laboratories. Currently one of the 
most promising glasses that is suitable for the realisation of 
long wavelength lasers is the chalcogenide glass. 
Chalcogenide glass fibres have been demonstrated to have 
very low loss within the MIR wavelength region [3] and to 
allow for a lanthanide doping of the fibre core [4] without 
inducing glass crystallisation. 

 
Unlike the fibre lasers that operate within the visible and 

near-infrared range the MIR fibre lasers rely typically on the 
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cascade pumping scheme (CPS). CPS allows the heat 
generation to be significantly reduced since all transitions 
between the relevant energy levels are radiative. Further, an 
improvement of laser efficiency can be achieved due to the 
idler wave contribution to the population inversion for the 
signal wave [5]. Fig.1 shows an example schematic diagram of 
the cascade pumping scheme. The pump increases the 
population of the level 3 at the expense of the population of 
the level 1. The signal interacts with the energy levels 2 and 3. 
The idler depletes the population of the level 2 and thus 
enhances the inversion of population for the signal wave. An 
example of a lanthanide element that operates within the 
pumping scheme illustrated in Fig.1 is a trivalent dysprosium 
ion. For other lanthanide elements it is possible that the idler 
facilitates the depletion of the level 3 while the signal interacts 
with the levels 2 and 1, e.g. Pr3+ [6].  

 
The fibre lasers and amplifiers operating under the standard 

three level pumping schemes have been studied numerically 
for over twenty years now. Currently, the relaxation algorithm 
is best established as a tool for the numerical analysis and 
design of fibre lasers. This algorithm was subsequently 
adopted for the numerical analysis of the fibre lasers that 
operate under the cascade pumping scheme [5]. More recently 
the coupled solution method was adopted from the field of the 
numerical modelling of high power lasers [7]. Both techniques 
however, although fairly robust, have a low convergence rate. 
We therefore derive a shooting method based algorithm that is 
combined with the Newton-Raphson method. In the paper we 
compare the proposed shooting method based algorithm with 
both standard algorithms that have been used previously in the 
literature. The comparison is performed for a Dy3+ doped 
chalcogenide glass fibre laser that operates under the cascade 
pumping scheme, which was studied extensively in the 
literature [5, 7]. 

 
The paper is divided in four sections. After the introduction 

in the second section we provide the equations that describe 
the light interaction with the dysprosium ions within the 
chalcogenide glass fibre. In the third section we give the 
details of all three algorithms that are used in this study. In the 
fourth section we perform the comparison of the algorithms’ 
performance. The last section provides a short summary of the 
main findings. 
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Fig. 1. Schematic diagram of Dy3+ energy level structure. 

II. LASER MODEL 
We consider three lowest levels for the trivalent dysprosium 

ion. The three-level model of the Dy3+ ion level populations is 
shown in Fig.1. Following [5], in order to calculate the 
populations of the energy levels, solution of the three 
associated coupled nonlinear differential equations is 
necessary. In steady state, these equations have the following 
form: 
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In (1) the coefficients axx are as follows: a11 = σpa*φp; a12 = 
σλ1a*φ(λ1); a13 = -σpe*φp-σλ1e*φ(λ1)-1/τ3; a21 = σλ2a*φ(λ2); a22 
= -σλ2e*φ(λ2)- σλ1a*φ(λ1)-1/τ2; a23 = σλ1e*φ(λ1) +β23/τ3  where 
τ3 and τ2 are the lifetimes of level 3 and 2, respectively, β32 is 
the branching ratio for the 3 -> 2 transition and σxya/e is the 
absorption/emission cross-section for the xy transition. φp, 
φ(λ1) and φ(λ2) are the values of the optical intensity for the 
pump, signal and idler, respectively, at wavelengths λ1 and λ2, 
respectively. The optical intensities are related to optical 
powers by the following expressions: φp = Pp  Γp λp/(A h c), 
φ(λ1)  =  P(λ1) Γλ1 λ1/(A h c) and  φ(λ2) = P(λ2) Γλ1 λ1/(A h c), 
where A is the doping cross-section, h is Planck’s constant, c 
is the speed of light in free space and Γx is the confinement 
factor [8].  

In a fibre laser, the level populations are modified due to the 
strong photon densities associated with the optical waves 
trapped within the laser cavity. The spatial evolution of the 
powers for the pump, signal and idler powers are given 
through solution of the following ordinary differential 
equations: 

[ ] ±±
±

−Γ= pppepap
p PPNN

dz
dP

ασσ  31   (2a) 

( ) [ ] ( ) ( )±±
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−Γ= 113322321
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λ
λ PPNN
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ea   (2b) 

( ) [ ] ( ) ( )±±
±

−Γ= 222211211
2 λαλσσ

λ
λ PPNN

dz
dP

ea    (2c) 

where ‘+’ and ‘-‘ refer to forward and backward travelling 
waves, Pp = Pp

++Pp
-;P(λ1) = P(λ1)+ + P(λ1)- and P(λ2) = P(λ2)+ 

+ P(λ2)-.  

The equations (2) are complemented by the following 
boundary conditions: 
 

( ) ( ) ( )000 ==== −+ zPzrzP ppp  (3a) 

( ) ( ) ( )LzPLzrLzP ppp ==== +−  (3b) 

( ) ( ) ( )0,00, 111 ====== −+ zPzrzP λλλλ λ  (3c) 

( ) ( ) ( )LzPLzrLzP ====== +− ,, 111 λλλλ λ  (3d) 

( ) ( ) ( )0,00, 222 ====== −+ zPzrzP λλλλ λ  (3e) 

( ) ( ) ( )LzPLzrLzP ====== +− ,, 222 λλλλ λ  (3f) 

 
In order to calculate the output power of the fibre laser for a 
given value of the pump power, the equations describing the 
optical power evolution for the pump, signal and the idler (2) 
combined with the equations for the rare earth ionic level 
populations (1) have to be solved self-consistently. In the next 
section we present three algorithms that were implemented for 
this purpose. 
 
 

III. ALGORITHMS 
In order to facilitate the discussion of the properties of the 

algorithms used to solve equations 1-3 we formally introduce 
a longitudinal discretisation along the fibre (Fig.2). Such 
discretisation is in fact automatically introduced when 
applying a numerical integration scheme to equations 2. We 
consider three algorithms: a relaxation method, a coupled 
solution method and a shooting method based algorithm.  
 
 

 
Fig. 2. Schematic diagram showing the longitudinal discretisation of the 

computational domain. 

 
Algorithm 1 is effectively an adaptation of an algorithm that 

is very well-known in the field of high power laser modelling, 
i.e. the coupled solution method (CSM) [9]. CSM iterations 
start from initial values of pump, signal and idler powers for 
the forward propagating waves (FPWs) at z = 0. The initial 
values of power for the backward propagating waves (BPWs) 
are typically set to zero at all z positions (Fig.2). The 
equations (2) are first solved for the FPWs to calculate the 
values of power at z = L. In the second step equations (3) are 
used to calculate the powers of BPW at z = L. These power 
values are used as the initial values for equations (2), which 
are then integrated for BPWs to obtain the power values at z 
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=0. Finally, equations (3) yield FPW powers at z = 0. This 
process is continued until the values of FPW powers at z = 0 
stop changing in the subsequent CSM iterations. Since, the 
application of standard numerical library routines for the 
integration of the ordinary differential equations (2) in the case 
of CSM is not straightforward we applied a local 
approximation, which assumes that the coefficients on the 
right hand side of (2) are locally constant and hence locally an 
exponential function approximation holds [10]. Thus 
essentially we approximate locally the set of differential 
equations (2) with a simple linear autonomous system of 
ordinary differential equations [11].  

 
 
 
Algorithm 1: Dy3+ doped fibre laser model using coupled 
solution method 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The main disadvantage of the algorithm 1 is the necessity of 
storing the power values for FPWs and BPWs at all discrete z 
positions. Further, it is not straightforward to use standard 
numerical integration routines with CSM. However, applying 
the relaxation method (RM) is a simple remedy for these both 
shortcomings. For this purpose it is necessary to solve (2) 
simultaneously for both FPWs and BPWs when calculating 
the values of FPW powers at z = L using the FPW powers at z 
= 0 as initial values.  Algorithm 2 summarises the main steps 
required for the implementation of the relaxation method. 

The convergence rate of algorithms 1 and 2 may in some 
cases be very slow. Therefore we suggest a third algorithm 
that combines the shooting method (SM) with the Newton-
Raphson method (NRM). For this purpose we first consider 
the following equations: 
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and introduce the following vector functions 

 ( )
( )
( )
( )

( )
( )
( )
( )
















=
















=
−

−

−

−

+

+

+

+

zP
zP
zP

zP
zP
zP
zP

zP

s

s

p

s

s

p

2

1

2

1 ;  (5) 

   
 
Equations (4) can be easily derived from the boundary 
condition (3). Observing that due to (2) equations (4) can be 
rewritten in the following way: 
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The set of 3 nonlinear equations (6) has 6 unknowns. 
However, using (3) one can easily reduce the number of 
unknowns to 3 by calculating the elements of the vector −P  

from the elements of the vector +P at z =0. Thus we obtain 3 
equations with 3 unknowns:  
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1. Start 

2. Provide the initial values for forward propagating 
waves (FPWs): ( ) ( ) +++ == pPPP ,, 21 λλλλ at z 
= 0  

3. Set to 0 the power values of backward propagating 
waves (BPWs): ( ) ( ) −−− == pPPP ,, 21 λλλλ  for 
all z 

4. Integrate equations (2) for FPWs and obtain 
( ) ( ) +++ == pPPP ,, 21 λλλλ at z = L (use latest 

available values of ( ) ( ) −−− == pPPP ,, 21 λλλλ ) 

5. Apply equations (3b),(3d) and (3f) to calculate 
( ) ( ) −−− == pPPP ,, 21 λλλλ  at z=L 

6. Integrate equations (2) for BPWs and obtain 
( ) ( ) −−− == pPPP ,, 21 λλλλ at z = 0 (use latest 

available values of ( ) ( ) +++ == pPPP ,, 21 λλλλ ) 

7. Apply equations (3a),(3c) and (3e) to calculate 
( ) ( ) +++ == pPPP ,, 21 λλλλ  at z=0 

8. Compare the calculated values of 
( ) ( ) +++ == pPPP ,, 21 λλλλ  at z =0 with the 

previous ones. If the stop condition not fulfilled go to 
4  

9. Stop 
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Algorithm 2: Dy3+ doped fibre laser model using relaxation 
method 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The solution of equation (7) can be obtained using the 
Newton-Raphson method (NRM). Using vector notation (7) 
can be expressed in the following compact way: 
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Since the analytical expressions for equations E1, E2 and E3 in 
(7) are only given implicitly via the solution of the initial 
value problem (3) for the FPWs, the analytical calculation of 
the Jacobian is very complicated. We therefore use the finite 
difference (FD) approach from [1] with FD step size equal to 
10-4.  Once the Jacobian J is known the updates of the FPW 
powers at z = 0 can be obtained from: 

 [ ] ( )( )0++ −=∆ iteriter PEPJ  (8a) 

 ( ) ( ) +++
+ ∆+= iteriteriter PPP 001  (8b) 

In (8) we have placed J in square brackets to indicate that the 
Jacobian J is a 3x3 matrix. The index ‘iter’ in (8) keeps the 
track of subsequent NRM iterations. Lastly we note that the 
BPW powers at z = 0 can be obtained from (3). Algorithm 3 
below gives the implementation details of the SM with NRM. 
 

Algorithm 3: Dy3+ doped fibre laser model using shooting 
method 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Lastly, we discuss the condition for termination of the 
iterations. For this purpose we calculate the residual as the 
square of the l2 norm of the vector obtained from the 
difference between the values of +P at z =0 from the last and 

previous iterations, i.e. the norm of the vector +∆ iterP  from 
equation (8b) [12]. The residual can be used to terminate the 
iterations once it reaches a predefined level. 

IV. RESULTS 
As an example of a fibre laser with the cascade pumping 
scheme we consider a Dy3+ chalcogenide glass fibre laser. The 
Dy3+ chalcogenide glass fibre laser structure was selected here 
since it is very often discussed in the literature [5-7]. The 
cavity structure for the fibre laser is shown in Fig.3. The idler 
and signal waves are reflected from the fibre ends due to 
Fresnel reflection. This simple fibre laser structure originally 
proposed and studied in [7].  
 

1. Start 

2. Provide the initial values for FPW and BPW powers 
at z = 0  

3. Integrate equations (2) for FPWs and BPWs and 
obtain ( ) ( ) +++ == pPPP ,, 21 λλλλ and 

( ) ( ) −−− == pPPP ,, 21 λλλλ at z = L  

4. Apply equations (3b),(3d) and (3f) to calculate 
( ) ( ) −−− == pPPP ,, 21 λλλλ  at z=L from 

( ) ( ) +++ == pPPP ,, 21 λλλλ  

5. Integrate equations (2) for FPWs and BPWs and 
obtain ( ) ( ) +++ == pPPP ,, 21 λλλλ and 

( ) ( ) −−− == pPPP ,, 21 λλλλ at z = 0  

6. Apply equations (3a),(3c) and (3e) to calculate 
( ) ( ) +++ == pPPP ,, 21 λλλλ  at z=0 from 

( ) ( ) −−− == pPPP ,, 21 λλλλ  

7. Compare the calculated values of 
( ) ( ) +++ == pPPP ,, 21 λλλλ  at z =0 with the 

previous ones. If the stop condition not fulfilled go to 
3  

8. Stop 

1. Start 

2. Provide the initial values for FPW and BPW powers 
at z = 0  

3. Use equations (3a),(3c) and (3e) to calculate 
consistently initial values for backward propagating 
waves (BPWs) ( ) ( ) −−− == pPPP ,, 21 λλλλ  at 
z=0 

4. Integrate equations (2) for FPWs and BPWs and 
obtain ( )( )0+

iterPE  for (8a) 

5. Apply FD method [1] to obtain the Jacobian 
elements for (8a)  

6. Solve the set of 3 linear algebraic equations (8a) and 
obtain new values of FPW powers at z = 0 from (8b) 

7. Apply equations (3a),(3c) and (3e) to calculate BPW 
powers at z =0 

8. Compare the calculated values of 
( ) ( ) +++ == pPPP ,, 21 λλλλ  at z =0 with the 

previous ones. If the stop condition not fulfilled go 
to 4  

9. Stop 
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Fig. 3. Schematic diagram of the fibre laser cavity used for simulations. 

 
It is convenient for the forthcoming analysis and discussion to 
identify different regions of fibre laser operation under the 
cascade pumping scheme. Fig.4 shows a typical dependence 
of the signal and idler output power on the pump power. In 
this plot two regions of the laser operation can be identified. 
Region I corresponds to the laser operation below the idler 
threshold. The laser operation within region I is characterised 
by a relatively slow growth of the signal output power. In the 
region II both idler and signal are above threshold. In region II 
the laser slope efficiency is enhanced due to the idler 
contribution to the population inversion of the signal wave. 
We apply all three algorithms to both the region I and II in 
Fig.4. 
 

 
Fig. 4. Typical dependence of the idler and signal power on the pump power 

for a fibre laser operating under cascade pumping scheme. 
 

 
Fig. 5. Numerically calculated dependence of the idler and signal power on 

the pump power for a fibre laser parameters listed in Table 1. 

 
The simulation parameters are listed in Table 1. Fig. 5 shows 
the calculated dependence of the idler and signal power on the 
pump power for the fibre laser with parameters listed in Table 
1. For the discussion that follows we select 2 values of the 
pump power in the region I, i.e. 0.2 W and 0.4 W and 2 values 
in the region II: 1 W and 5 W. For the selected values of the 
pump power, Table 2 gives the values of signal and idler 
power that are believed to be calculated accurately on at least 
12 digital places. These reference results were obtained using 
algorithm 3 with the standard Matlab ode45 Dormand and 
Prince version of the Runge-Kutta (5)4 algorithm [13]. The 
relative and absolute tolerances were set to 10-13.  

 
 

 

Figs.6-9 show the dependence of the residual, CPU time, and 
absolute error on the iteration number for the three algorithms 
studied: algorithm 1 – Coupled Solution Method (CSM), 
algorithm 2 – Relaxation Method (RM), algorithm 3 – 
Shooting Method combined with Newton-Raphson Method 
(SM-NRM). We performed calculations at the selected four 
pump power values from Table 2. The absolute error was 
calculated as a absolute value of the difference between the 
calculated result and the reference result taken from the table 
2.  Algorithms 2 and 3 use the standard Matlab ode45 routine 
to integrate ordinary differential equations (2) while 
algorithm 1 uses, as mentioned in the previous section, the 

 TABLE II 
REFERENCE VALUES OF SIGNAL AT IDLER POWER CALCULATED BY SM-

NRM FOR THE FIBRE LASER PARAMETERS FROM TABLE I 
Pump 
power 

Signal power Idler power 

0.2 W 4.732684968926743x10-3 W 0 W 

0.4 W 8.744905834624988x10-3 W 0 W 

1 W 4.893233642458401x10-2 W      5.505718865901951x10-2 W 

5 W 3.183467070903177x10-1 W    4.249980254830068x10-1 W 

 

 TABLE I  
SIMULATION PARAMETERS FOR A DY3+ CHALCOGENIDE GLASS FIBRE LASER 

FROM FIG.3 

Quantity Value Unit 

Dy3+-ion concentration 7x1019 cm-3 

Core radius 5.5 µm 

Numerical aperture 0.2  

Cladding radius 30 µm 

Fibre length L 2.1 m 

Fibre loss at all wavelengths 1 dB/m 

Lifetime of level 3 2 ms 

Lifetime of level 2 5.2 ms 

Branching ratio for 3-2 transitions 0.15  

reflectivity for idler, signal and pump at z = 0 0.2  

reflectivity for idler, signal and pump at z = L 0.2  

Confinement factor for signal (λ1) 0.8  

Confinement factor for idler (λ2) 0.9  

Confinement factor for pump 0.034  

Pump wavelength 1.71 µm 

Signal wavelength (λ1) 4.6 µm 

Idler wavelength (λ2) 3.35 µm 

Pump emission cross section 0.318x10-20 cm2 

Pump absorption cross section 0.501x10-20 cm2 

Idler emission cross section 0.912x10-20 cm2 

Idler absorption cross section 0.485x10-20 cm2 

Signal emission cross section 0.097x10-20 cm2 

Signal absorption cross section 0.016x10-20 cm2 
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local approximation with the Exponential Function Solution 
(EFS). The relative and absolute tolerance for ode45 was kept 
equal to 10-13 while EFS was used with 1000 equidistant 
longitudinal steps. The initial values of the pump, idler and 
signal powers for all 3 algorithms were set to: 
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where Pp is the pump power (Fig.2) and w =0.8. 

 

 
Fig. 6. Numerically calculated dependence of the residual, CPU time and 
absolute error for the three algorithms studied: algorithm 1 – Coupled 

Solution Method (CSM), algorithm 2 – Relaxation Method (RM), algorithm 3 
– Shooting Method combined with Newton-Raphson Method (SM-NRM). 

The calculation parameters are listed in Table 1, while the pump power equals 
5 W. 

The results from Figs.6-9 show that the calculation time for 
SM-NRM is approximately twice the time needed for CSM 
and RM. The convergence rate of the SM-NRM is initially 
comparable with the other algorithms. However, after few 
initial iteration steps the convergence of SM-NRM improves 
significantly and is far superior when compared with CSM and 
RM. It can be also observed that the slowest convergence 
takes place near the idler threshold (at 0.4 W). In this case it 
took nearly 8 SM-NRM iterations before the onset of the fast 
convergence. The convergence rate of RM and CSM is 
similar. However, in CSM results one can observe a flattening 
of the error dependence for larger values of the iteration 
number. This behaviour is caused by the limited accuracy of 
the EFS approximation. A simple remedy for this effect is an 
increase of the longitudinal steps’ number. The penalty for this 
however, is a significant increase of the calculation time, 
which would render this algorithm relatively inefficient. More 
effective solution of the problem would require an application 
of a more efficient numerical integration scheme, c.f. [11, 14]. 

 

 
Fig. 7. Numerically calculated dependence of the residual, CPU time and 
absolute error for the three algorithms studied: algorithm 1 – Coupled 

Solution Method (CSM), algorithm 2 – Relaxation Method (RM), algorithm 3 
– Shooting Method combined with Newton-Raphson Method (SM-NRM). 

The calculation parameters are listed in Table 1, while the pump power equals 
1 W. 

 

 
Fig. 8. Numerically calculated dependence of the residual, CPU time and 
absolute error for the three algorithms studied: algorithm 1 – Coupled 

Solution Method (CSM), algorithm 2 – Relaxation Method (RM), algorithm 3 
– Shooting Method combined with Newton-Raphson Method (SM-NRM). 

The calculation parameters are listed in Table 1, while the pump power equals 
0.4 W. 

 

 

 

Further improvement of the algorithm performance can be 
obtained by applying the RM for the calculation of the initial 
guess of the SM-NRM. This idea can be deduced from the 
results shown in Figs.6-9. Since during the initial iteration 
steps the convergence rate of RM and SM-NRM is similar 
while the calculation time of RM is less an increase in the 
overall efficiency of the algorithm can be expected by using 
RM instead of SM-NRM during the initial iteration steps and 
switching to SM-NRM when the region of the fast 
convergence is reached. 
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Fig. 9. Numerically calculated dependence of the residual, CPU time and 
absolute error for the three algorithms studied: algorithm 1 – Coupled 

Solution Method (CSM), algorithm 2 – Relaxation Method (RM), algorithm 3 
– Shooting Method combined with Newton-Raphson Method (SM-NRM). 

The calculation parameters are listed in Table 1, while the pump power equals 
0.2 W. 

 
Fig. 10. Numerically calculated dependence of the residual, CPU time and 
absolute error for the algorithm 3, i.e. Shooting Method combined with 

Newton-Raphson Method (SM-NRM) whereby the initial guess was 
calculated by 4 iterations of algorithm 2 – Relaxation Method (RM). The 

calculation parameters are listed in Table 1. 

In Fig.10 we have therefore studied a SM-NRM algorithm that 
uses 4 RM iterations to refine the initial guess. As expected, 
the time required to complete the first iteration increased when 
compared with Figs.6-9. This is because additional 4 RM 
iterations need to be completed. However, for the relatively 
slowly converging results, at the pump powers below the idler 
threshold, the onset of the fast convergence is taking place 
several iterations earlier than in the results shown in Figs.6-9. 
The overall CPU time needed for completing 10 iterations 
however, is only marginally larger. It was also observed the 
algorithm that combines SM-NRM with RM is less sensitive 
to the choice of the initial guess than the SM-NRM.  

V. CONCLUSIONS 
We developed an algorithm for the analysis of the fibre lasers 
operating under the cascade pumping scheme that is based on 
the combination of the shooting method with the Newton-
Raphson method (SM-NRM). The developed algorithm 
converges faster than the standard methods reported so far in 
the available literature. It was also shown that the further 
improvement of the algorithm performance can be obtained by 
combining SM-NRM with the relaxation method (RM). 
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