HARDWARE IMPLEMENTATION OF MISO ON ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING PLATFORM WITH THE HELP OF ALAMOUTI ALGORITHM
Abstract
Many software based OFDM techniques were proposed from last half decade to improve the performance of the system. This paper tried to implement the same with Hardware implementation. We created Hardware based MISO platform with OFDM. We implemented Alamouti algorithm on this test bed. The test bed is implemented with the help of Field Programmable Gate Array (FPGA). The test bed is functionalized with the help of FPGA through Xilinx based system generator for DSP. In this paper we considered the 2×1 MISO implementation with Alamouti algorithm. The simulation results showed that BER and SNR are considerably high for MISO than SISO. The results also proved that proposed OFDM based Alamouti implementation for MISO is excellent in all performance criterions
Many software based OFDM techniques were proposed from last half decade to improve the performance of the system. This paper tried to implement the same with Hardware implementation. We created Hardware based MISO platform with OFDM. We implemented Alamouti algorithm on this test bed. The test bed is implemented with the help of Field Programmable Gate Array (FPGA). The test bed is functionalized with the help of FPGA through Xilinx based system generator for DSP. In this paper we considered the 2×1 MISO implementation with Alamouti algorithm. The simulation results showed that BER and SNR are considerably high for MISO than SISO. The results also proved that proposed OFDM based Alamouti implementation for MISO is excellent in all performance criterions
References
Seetaiah Kilaru, Aditya Gali,"Improving Quality of Service of Femto Cell Using Optimum Location Identification", IJCNIS, vol.7, no.10, pp.35-41, 2015.DOI: 10.5815/ijcnis.2015.10.04
T. Pereira; Violas, M.; J.L. Lourenço; Gameiro, A.; Silva, A. ; Ribeiro, C.; "An FPGA Implementation of OFDM Transceiver for LTE Applications", Intrnl. Journal On Advances in Systems and Measurements, Vol. 6, No. 1-2, pp. 224 - 234, June, 2013.
S. Kaiser, P. Hoeher, “Performance of multi-carrier CDMA systems with channel estimation in two dimensions,” in Proc. IEEE Personal, Indoor and Mobile Radio Communications Symposium, pp. 115-119, Helsinki, Finland, September 1997
P. Murphy, A. Sabharwal, and B. Aazhang, “On building a cooperative communication system: testbed implementation and first results”, EURASIP Journal on Wireless Communications and Networking, June 2009, doi:10.1155/2009/972739
Stefan Kaiser, “Space Frequency Block Coding and Code Division Multiplexing in OFDM Systems”, IEEE Proceedings of GLOBECOM, 2003.
J. Rinne, M. Renfors, “Pilot spacing in Orthogonal Frequency Division Multiplexing systems on practical channels,” IEEE Transactions on Consumer Electronics, vol. 42 no. 3, pp. 959 – 962, November 1996
P. Moose, “A technique for Orthogonal Frequency Division Multiplexing frequency offset correction”, IEEE Transactions on Communications, vol. 42 no. 10, pp. 2908-2914, October 1984.
Hui Liu and Guoqing Li, OFDM-Based Broadband Wireless Networks, John Wiley & Sons, Inc., 2005
P. Hoeher, S. Kaiser, P. Robertson, ”Two-dimensional pilot-symbol-aided channel estimation by Wiener filtering,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 1845-1848, April 199
Jan-Jaap van de Beek, M. Sandell, and P. O. Börjesson, “ML estimation of time and frequency offset in OFDM systems”, IEEE Transactions on Signal Processing, vol. 45, no. 7, July 1997
A. Chini, “Multicarrier modulation in frequency selective fading channels,” Ph.D. dissertation, Carleton University, Canada, 1994.
M. Majó, “Design and implementation of an OFDM-based communication system for the GNU radio platform”, Master Thesis, Dec. 2009.
A. Dowler, A. Doufexi, A. Nix, “Performance Evaluation of Channel Estimation Techniques for a Mobile Fourth Generation Wide Area OFDM System,” in Proc. IEEE Vehicular Technology Conference, vol. 4, pp. 2036 – 2040, Vancouver, Canada, Sept. 2002.
Albert A. Lysko, David L. Johnson,” A Study of Propagation Effects in a Wireless Test Bed”, in WSEAS Transactions on Communications, Issue 8, Volume 7, August 2008, pp.857-871
3GPP TS 36.201 V8.1.0, 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA);LTE Physical Layer - General Description, Nov. 2007.
S. Coleri, M. Ergen, A. Puri, A. Bahai, “Channel Estimation Techniques Based on Pilot Arrangement in OFDM Systems,” IEEE Transactions on Broadcasting, vol. 48, no. 3, pp. 223–229, Sept. 2002.
T.M. Schmidl and Cox, and D. C. Cox, “Robust frequency and timing synchronization for OFDM”, IEEE Transactions on Communications, vol. 45, pp. 1613-1621, December 1997
A. Marwanto, M. A. Sarijari, N. Fisal, S. K. S. Yusof, and R. A. Rashid, “Experimental study of OFDM implementation utilizing GNU Radio and USRP – SDR”, Proc. of the IEEE 9th Malaysia International Conference on Communicatons, Dec. 2009, pp. 132-135.
J. Garcia and R. Cumplido, “On the design of an FPGA-based OFDM modulator for IEEE 802.16-2004”, 2005 International Conference on Reconfigurable Computing and FPGAs, 2005, pp. 22-25
Y. Li, “Pilot-symbol-aided channel estimation for OFDM in wireless systems,” IEEE Transactions on Vehicular Technology, Vol. 49, Issue 4, pp.1207-1215, July 2000
G.J. Foschini and M.J. Gans, “On limits of wireless communications in a fading environment when using multiple antennas”, Wireless Personal Communications Magazine, vol. 6, no. 3, Mar. 1998.
Kilaru, S., Harikishore, K., Sravani, T., Anvesh, C. L., & Balaji, T. (2014, August). Review and analysis of promising technologies with respect to Fifth generation networks. In Networks & Soft Computing (ICNSC), 2014 First International Conference on (pp. 248-251). IEEE.
R. Negi, and J. Cioffi, “Pilot tone selection for channel estimation in a mobile OFDM system”, Journal IEEE Transactions on Consumer Electronics, pp. 1122-1128, vol. 44 issue 3, August 1998, doi: 10.1109/30.713244
Kilaru, S. (2014). Ability of OFDMA in Handling Interference of Femto Cells Under Random Access Process. Journal of Engineering Science and Technology Review, 7(2), 133-136.
S. Boumard, A. Mammela, “Channel Estimation Versus Equalization in an OFDM WLAN System,” in Proc. IEEE Vehicular Technology Conference, vol. 1, pp. 653–657, Rhodes, Greece, May 2001
Kilaru, S., Prasad, Y. A., Kiran, K. S., & Chandra, N. S. (2014). Design and Analysis of Heterogenious Networks. International Journal of Applied Engineering Research, 9(17), 4201-4208.
S. Syed Ameer Abbas, S. J. Thiruvengadam,” Fpga Implementation Of 33GPP-Lte Physical Downlinkcontrol Channel Using Diversity Techniques”, in WSEAS Transactions On Signal Processing, Issue 2, Volume 9, April 2013, pp 84-97
C. Athaudage, A. Jayalath, “Low–Complexity Channel Estimation for Wireless OFDM Systems,” in Proc. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, vol. 1, pp. 521 – 525, Beijing, China, Sept. 2003
Kilaru, S. (2013, November). Public Safety Communication using Relay Node in LTE-Advanced Technology. In International Journal of Engineering Research and Technology (Vol. 2, No. 11 (November-2013)). ESRSA Publications
M. Shin, H. Lee, C. Lee, “Enhanced Channel Estimation Technique for MIMO–OFDM Systems,” IEEE Transactions on Vehicular Technology, vol. 53, no. 1, pp. 261–265, Jan. 2004.
J. Garcia and R. Cumplido, “On the design of an FPGA-based OFDM modulator for IEEE 802.11a”, 2nd International Conference on Electrical and Electronics Engineering, Sept. 2005, pp. 114-117.
Anou Abderrahmane, Mehdi Merouane, Bensebti Messaoud, “Diversity Techniques to combat fading in WiMAX”, in WSEAS Transactions on Communications, Issue 2, Volume 7, February 2008, pp.43-51.
Downloads
Published
Issue
Section
License
Copyright (c) 2017 International Journal of Electronics and Telecommunications
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on https://creativecommons.org/licenses/by/4.0/.
2. Author’s Warranties
The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author/s. The undersigned also warrants that the manuscript (or its essential substance) has not been published other than as an abstract or doctorate thesis and has not been submitted for consideration elsewhere, for print, electronic or digital publication.
3. User Rights
Under the Creative Commons Attribution license, the author(s) and users are free to share (copy, distribute and transmit the contribution) under the following conditions: 1. they must attribute the contribution in the manner specified by the author or licensor, 2. they may alter, transform, or build upon this work, 3. they may use this contribution for commercial purposes.
4. Rights of Authors
Authors retain the following rights:
- copyright, and other proprietary rights relating to the article, such as patent rights,
- the right to use the substance of the article in own future works, including lectures and books,
- the right to reproduce the article for own purposes, provided the copies are not offered for sale,
- the right to self-archive the article
- the right to supervision over the integrity of the content of the work and its fair use.
5. Co-Authorship
If the article was prepared jointly with other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Termination
This agreement can be terminated by the author or the Journal Owner upon two months’ notice where the other party has materially breached this agreement and failed to remedy such breach within a month of being given the terminating party’s notice requesting such breach to be remedied. No breach or violation of this agreement will cause this agreement or any license granted in it to terminate automatically or affect the definition of the Journal Owner. The author and the Journal Owner may agree to terminate this agreement at any time. This agreement or any license granted in it cannot be terminated otherwise than in accordance with this section 6. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.
7. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by the Journal Owner or its sublicensee.
8. Miscellaneous
The Journal Owner will publish the article (or have it published) in the Journal if the article’s editorial process is successfully completed and the Journal Owner or its sublicensee has become obligated to have the article published. Where such obligation depends on the payment of a fee, it shall not be deemed to exist until such time as that fee is paid. The Journal Owner may conform the article to a style of punctuation, spelling, capitalization and usage that it deems appropriate. The Journal Owner will be allowed to sublicense the rights that are licensed to it under this agreement. This agreement will be governed by the laws of Poland.
By signing this License, Author(s) warrant(s) that they have the full power to enter into this agreement. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.