Video Compression and Optimization Technologies - Review

Authors

  • Syed Ghayas Uddin AGH University of Krakow
  • Mikolaj Leszczuk AGH University of Krakow
  • Michal Michal Grega AGH University of Krakow

Abstract

The use of video streaming is constantly increasing. High-resolution video requires resources on both the sender and the receiver side. There are many compression techniques that can be utilized to compress the video and simultaneously maintain quality. The main goal of this paper is to provide an overview of video streaming and QoE. This paper describes the basic concepts and discusses existing methodologies to measure QoE. Subjective, objective, and video compression technologies are discussed. This review paper gathers the codec implementation developed by MPEG, Google, and Apple. This paper outlines the challenges and future research directions that should be considered in the measurement and assessment of quality of experience for video services.

References

Cisco, “Cisco Annual Internet Report (2018-2023),” Mar. 2020.

S. Lindlahr, “Forecast of Video-on-Demand revenue by segment in the United States from 2014 to 2025,” Jun. 2021.

P. Madhaveelatha and A. AnnisFathima, “REVIEW ON IMAGE AND VIDEO COMPRESSION STANDARDS,” Asian Journal of Pharmaceutical and Clinical Research, vol. 10, pp. 373–377, 2017.

Z.-N. Li, M. Drew, and J. Liu, “Modern Video Coding Standards: H.264, H.265, and H.266,” 2021, pp. 423–478. doi: 10.1007/978-3-030-62124-7_12.

Z. and P. X. and L. R. Wang Qi and Cheng, “Optimizing Technology in Video Coding and Decoding,” in Signal and Information Processing, Networking and Computers, M. and X. L. and Z. J. Wang Yue and Fu, Ed., Singapore: Springer Singapore, 2020, pp. 874–881.

M. and G. M. Uddin Syed and Leszczuk, “Preliminary Study on Video Codec Optimization Using VMAF,” in Intelligent Information and Database Systems, T. K. and T. U. and H. T.-P. and T. B. and S. E. Nguyen Ngoc Thanh and Tran, Ed., Cham: Springer International Publishing, 2022, pp. 469–480.

K. Debattista, K. Bugeja, S. Spina, T. Bashford-Rogers, and V. Hulusic, “Frame Rate vs Resolution: A Subjective Evaluation of Spatiotemporal Perceived Quality Under Varying Computational Budgets,” Computer Graphics Forum, vol. 37, Dec. 2017, doi: 10.1111/cgf.13302.

P. Lebreton and K. Yamagishi, “Predicting User Quitting Ratio in Adaptive Bitrate Video Streaming,” IEEE Trans Multimedia, vol. PP, p. 1, Dec. 2020, doi: 10.1109/TMM.2020.3044452.

N. Barman and M. G. Martini, “QoE Modeling for HTTP Adaptive Video Streaming–A Survey and Open Challenges,” IEEE Access, vol. 7, pp. 30831–30859, 2019, doi: 10.1109/ACCESS.2019.2901778.

N. Barman and M. G. Martini, “User Generated HDR Gaming Video Streaming: Dataset, Codec Comparison, and Challenges,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 32, no. 3, pp. 1236–1249, 2022, doi: 10.1109/TCSVT.2021.3077384.

K. and D. M. K. and L. M.-C. and P. M. and P. A. and Y. J. and Z. A. Reiter Ulrich and Brunnström, “Factors Influencing Quality of Experience,” in Quality of Experience: Advanced Concepts, Applications and Methods, A. Möller Sebastian and Raake, Ed., Cham: Springer International Publishing, 2014, pp. 55–72. doi: 10.1007/978-3-319-02681-7_4.

T. Ebrahimi, “Quality of Multimedia Experience: Past, Present and Future,” MM’09 - Proceedings of the 2009 ACM Multimedia Conference, with Co-located Workshops and Symposiums, Dec. 2009, doi: 10.1145/1631272.1631275.

M. Yang, S. Wang, R. N. Calheiros, and F. Yang, “Survey on QoE Assessment Approach for Network Service,” IEEE Access, vol. 6, pp. 48374–48390, 2018, doi: 10.1109/ACCESS.2018.2867253.

N. Barman and M. G. Martini, “QoE Modeling for HTTP Adaptive Video Streaming–A Survey and Open Challenges,” IEEE Access, vol. 7, pp. 30831–30859, 2019.

T. de Pessemier, K. de Moor, W. Joseph, L. de Marez, and L. Martens, “Quantifying Subjective Quality Evaluations for Mobile Video Watching in a Semi-Living Lab Context,” IEEE Transactions on Broadcasting, vol. 58, no. 4, pp. 580–589, 2012, doi: 10.1109/TBC.2012.2199590.

A. Catellier, M. H. Pinson, W. Ingram, and A. A. Webster, “Impact of mobile devices and usage location on perceived multimedia quality,” 2012 Fourth International Workshop on Quality of Multimedia Experience, pp. 39–44, 2012.

J.-H. Choe, T.-U. Jeong, H. Choi, E.-J. Lee, S.-W. Lee, and C.-H. Lee, “Subjective Video Quality Assessment Methods for Multimedia Applications,” Journal of Broadcast Engineering, vol. 12, Dec. 2007, doi: 10.5909/JBE.2007.12.2.177.

R. Piroddi and T. Vlachos, “A Method for Single-Stimulus Quality Assessment of Segmented Video,” EURASIP J Appl Signal Processing, vol. 2006, p. 210, Dec. 2006, doi: 10.1155/ASP/2006/39482.

R. Pauliks and I. Slaidins, “Quality evaluation of synthetic video in simultaneous double stimulus environment,” in 2013 IEEE 2nd International Conference on Image Information Processing, IEEE ICIIP 2013, Dec. 2013, pp. 170–175. doi: 10.1109/ICIIP.2013.6707576.

F. de Simone, L. Goldmann, V. Baroncini, and T. Ebrahimi, “Subjective evaluation of JPEG XR image compression,” Proceedings of SPIE - The International Society for Optical Engineering, Dec. 2009, doi: 10.1117/12.830714.

M. H. Pinson and S. Wolf, “A new standardized method for objectively measuring video quality,” IEEE Transactions on Broadcasting, vol. 50, pp. 312–322, 2004.

Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural similarity for image quality assessment,” The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398-1402 Vol.2, 2003.

A. Rehman, K. Zeng, and Z. Wang, “Display device-adapted video quality-of-experience assessment,” in Electronic imaging, 2015.

A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a ‘Completely Blind’ Image Quality Analyzer,” IEEE Signal Process Lett, vol. 20, pp. 209–212, 2013.

M. Ghanbari, “Scope of validity of PSNR in image/video quality assessment,” Electron Lett, vol. 44, no. 13, pp. 800-801(1), Jun. 2008, [Online]. Available: https://digital-library.theiet.org/content/journals/10.1049/el_20080522

A. Punchihewa, “Video Compression: Challenges and Opportunities,” vol. 2019, pp. 24–28, Dec. 2019.

J.-S. Lee and T. Ebrahimi, “Perceptual Video Compression: A Survey,” IEEE J Sel Top Signal Process, vol. 6, pp. 684–697, 2012.

Z. Wang, L. Lu, and A. C. Bovik, “Video quality assessment based on structural distortion measurement,” Signal Process. Image Commun., vol. 19, pp. 121–132, 2004.

F. Zhang and D. R. Bull, “A Perception-Based Hybrid Model for Video Quality Assessment,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 26, no. 6, pp. 1017–1028, 2016, doi: 10.1109/TCSVT.2015.2428551.

Z. Li, I. Katsavounidis, A. Moorthy, and M. Manohara, “Toward A Practical Perceptual Video Quality Metric ,” Jun. 2016.

S. Li, L. Ma, and K. N. Ngan, “Video quality assessment by decoupling additive impairments and detail losses,” 2011 Third International Workshop on Quality of Multimedia Experience, pp. 90–95, 2011.

B. O. Jaramillo, J. O. N. Castañeda, L. Platisa, and W. Philips, “Content-aware objective video quality assessment,” J Electron Imaging, vol. 25, 2016.

H. Yuan, C. Guo, J. Liu, X. Wang, and S. T. W. Kwong, “Motion-Homogeneous-Based Fast Transcoding Method From H.264/AVC to HEVC,” IEEE Trans Multimedia, vol. 19, pp. 1416–1430, 2017.

R. El-Feghali, F. Speranza, D. Wang, and A. Vincent, “Video Quality Metric for Bit Rate Control via Joint Adjustment of Quantization and Frame Rate,” IEEE Transactions on Broadcasting, vol. 53, pp. 441–446, 2007.

P. le Callet, S. Péchard, S. Tourancheau, A. Ninassi, and D. Barba, “Towards the next generation of video and image quality metrics: Impact of display, resolution, contents and visual attention in subjective assessment,” Dec. 2007.

J. Korhonen and J. You, “Improving objective video quality assessment with content analysis,” Dec. 2010.

J. Joskowicz, R. Sotelo, and J. C. López-Ardao, “Towards a General Parametric Model for Perceptual Video Quality Estimation,” IEEE Transactions on Broadcasting, vol. 59, pp. 569–579, 2013.

Y. Pitrey, M. Barkowsky, R. Pépion, P. le Callet, and H. Hlavacs, “Influence of the source content and encoding configuration on the perceived quality for scalable video coding,” in Electronic imaging, 2012.

Y.-F. Ou, Y. Xue, and Y. Wang, “Q-STAR: A Perceptual Video Quality Model Considering Impact of Spatial, Temporal, and Amplitude Resolutions,” IEEE Transactions on Image Processing, vol. 23, pp. 2473–2486, 2012.

R. El-Feghali, F. Speranza, D. Wang, and A. Vincent, “Video Quality Metric for Bit Rate Control via Joint Adjustment of Quantization and Frame Rate,” IEEE Transactions on Broadcasting, vol. 53, pp. 441–446, 2007.

M.-N. Garcia, A. Raake, and P. List, “Towards content-related features for parametric video quality prediction of IPTV services,” 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 757–760, 2008.

S. Winkler, “Analysis of Public Image and Video Databases for Quality Assessment,” IEEE J Sel Top Signal Process, vol. 6, no. 6, pp. 616–625, 2012, doi: 10.1109/JSTSP.2012.2215007.

M. H. Pinson, “The Consumer Digital Video Library [Best of the Web],” IEEE Signal Process Mag, vol. 30, no. 4, pp. 172–174, 2013, doi: 10.1109/MSP.2013.2258265.

Z. Wang and Q. Li, “Video quality assessment using a statistical model of human visual speed perception,” J Opt Soc Am A Opt Image Sci Vis, vol. 24, pp. B61-9, Dec. 2008, doi: 10.1364/JOSAA.24.000B61.

K. Seshadrinathan and A. C. Bovik, “Motion Tuned Spatio-Temporal Quality Assessment of Natural Videos,” IEEE Transactions on Image Processing, vol. 19, no. 2, pp. 335–350, 2010, doi: 10.1109/TIP.2009.2034992.

K. Seshadrinathan, R. Soundararajan, A. C. Bovik, and L. K. Cormack, “Study of Subjective and Objective Quality Assessment of Video,” IEEE Transactions on Image Processing, vol. 19, pp. 1427–1441, 2010.

B. Ortiz Jaramillo, A. Kumcu, L. Platisa, and W. Philips, “A full reference video quality measure based on motion differences and saliency maps evaluation,” in VISAPP 2014 - Proceedings of the 9th International Conference on Computer Vision Theory and Applications, Dec. 2014.

K. Seshadrinathan, R. Soundararajan, A. C. Bovik, and L. K. Cormack, “Study of Subjective and Objective Quality Assessment of Video,” IEEE Transactions on Image Processing, vol. 19, pp. 1427–1441, 2010.

L. Ma, W. Lin, C. Deng, and K. N. Ngan, “Image Retargeting Quality Assessment: A Study of Subjective Scores and Objective Metrics,” IEEE J Sel Top Signal Process, vol. 6, no. 6, pp. 626–639, 2012, doi: 10.1109/JSTSP.2012.2211996.

A. K. Moorthy and A. C. Bovik, “Efficient Video Quality Assessment Along Temporal Trajectories,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 20, no. 11, pp. 1653–1658, 2010, doi: 10.1109/TCSVT.2010.2087470.

F. Zhang, “IVP Subjective Quality Video Database .”

International Telecommunication Union, “H.120: Codecs for Videoconferencing using primary digital group transmission .”

International Telecommunication Union, “H.262: Information technology - Generic coding of moving pictures and associated audio information: Video.”

International Telecommunication Union, “H.264: Advanced Video Coding for generic audiovisual services .”

B. Bross, J. Chen, J.-R. Ohm, G. J. Sullivan, and Y.-K. Wang, “Developments in International Video Coding Standardization After AVC, With an Overview of Versatile Video Coding (VVC),” Proceedings of the IEEE, vol. 109, pp. 1463–1493, 2021.

G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the High Efficiency Video Coding (HEVC) Standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1649–1668, 2012, doi: 10.1109/TCSVT.2012.2221191.

Y. Chen et al., “An Overview of Core Coding Tools in the AV1 Video Codec,” Dec. 2018, pp. 41–45. doi: 10.1109/PCS.2018.8456249.

D. Mukherjee et al., “A Technical Overview of VP9–the Latest Open-Source Video Codec,” SMPTE Motion Imaging J, vol. 124, pp. 44–54, Dec. 2015, doi: 10.5594/j18499.

G. Bjøntegaard, “Calculation of Average PSNR Differences between RD-curves,” 2001.

P. Hanhart and T. Ebrahimi, “Calculation of average coding efficiency based on subjective quality scores,” J. Vis. Commun. Image Represent., vol. 25, pp. 555–564, 2014.

I. Katsavounidis and L. Guo, “Video codec comparison using the dynamic optimizer framework,” in Applications of Digital Image Processing XLI, A. G. Tescher, Ed., in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 10752. Sep. 2018, p. 107520Q. doi: 10.1117/12.2322118.

P. Akyazi and T. Ebrahimi, “Comparison of Compression Efficiency between HEVC/H.265, VP9 and AV1 based on Subjective Quality Assessments,” Dec. 2018, pp. 1–6. doi: 10.1109/QoMEX.2018.8463294.

D. Grois, T. Nguyen, and D. Marpe, “Coding efficiency comparison of AV1/VP9, H.265/MPEG-HEVC, and H.264/MPEG-AVC encoders,” 2016 Picture Coding Symposium (PCS), pp. 1–5, 2016.

A. S. Dias, S. G. Blasi, F. Rivera, E. Izquierdo, and M. Mrak, “AN OVERVIEW OF RECENT VIDEO CODING DEVELOPMENTS IN MPEG AND AOMEDIA,” 2018.

L. Guo, J. de Cock, and A. Aaron, “Compression Performance Comparison of x264, x265, libvpx and aomenc for On-Demand Adaptive Streaming Applications,” 2018 Picture Coding Symposium (PCS), pp. 26–30, 2018.

A. Zabrovskiy, C. Feldmann, and C. Timmerer, “A Practical Evaluation of Video Codecs for Large-Scale HTTP Adaptive Streaming Services,” 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 998–1002, 2018.

P. Fleury, S. Bhattacharjee, L. Piron, T. Ebrahimi, and M. Kunt, “MPEG-4 Video Verification Model: A Solution for Interactive Multimedia Applications,” J Electron Imaging, vol. 7, Dec. 2003, doi: 10.1117/1.482593.

J. Samuelsson, K. Choi, J. Chen, and D. Rusanovskyy, “MPEG-5 Part 1: Essential Video Coding,” SMPTE Motion Imaging J, vol. 129, no. 7, pp. 10–16, 2020, doi: 10.5594/JMI.2020.3001795.

F. Maurer, S. Battista, L. Ciccarelli, G. Meardi, and S. Ferrara, “Overview of MPEG-5 Part 2 - Low Complexity Enhancement Video Coding (LCEVC),” vol. 3, pp. 109–119, Dec. 2020.

G. Esakki, A. S. Panayides, V. Jalta, and M. S. Pattichis, “Adaptive Video Encoding for Different Video Codecs,” IEEE Access, vol. 9, pp. 68720–68736, 2021, doi: 10.1109/ACCESS.2021.3077313.

M. A. Usman et al., “Suitability of VVC and HEVC for Video Telehealth Systems,” Computers, Materials & Continua, 2021.

A. S. Panayides, M. S. Pattichis, M. Pantziaris, A. G. Constantinides, and C. S. Pattichis, “The Battle of the Video Codecs in the Healthcare Domain - A Comparative Performance Evaluation Study Leveraging VVC and AV1,” IEEE Access, vol. 8, pp. 11469–11481, 2020, doi: 10.1109/ACCESS.2020.2965325.

T. Uhl, C. Hoppe, and J. H. Klink, “Modern Codecs by Video Streaming under Use DASH Technique: An Objective Comparison Study,” in 2020 International Conference on Software, Telecommunications and Computer Networks (SoftCOM), 2020, pp. 1–5. doi: 10.23919/SoftCOM50211.2020.9238324.

D. Ashimov, M. G. Martini, and N. Barman, “Quality Assessment of Gaming Videos Compressed via AV1,” in 2020 Twelfth International Conference on Quality of Multimedia Experience (QoMEX), 2020, pp. 1–4. doi: 10.1109/QoMEX48832.2020.9123112.

Z. Li, Z. Duanmu, W. Liu, and Z. Wang, “AVC, HEVC, VP9, AVS2 or AV1? — A Comparative Study of State-of-the-Art Video Encoders on 4K Videos,” 2019, pp. 162–173. doi: 10.1007/978-3-030-27202-9_14.

M. A. Usman and M. G. Martini, “On the suitability of VMAF for quality assessment of medical videos: Medical ultrasound & wireless capsule endoscopy,” Comput Biol Med, vol. 113, p. 103383, 2019, doi: https://doi.org/10.1016/j.compbiomed.2019.103383.

A. V Katsenou, F. Zhang, M. Afonso, and D. R. Bull, “A Subjective Comparison of AV1 and HEVC for Adaptive Video Streaming,” in 2019 IEEE International Conference on Image Processing (ICIP), 2019, pp. 4145–4149. doi: 10.1109/ICIP.2019.8803523.

T. Uhl, J. H. Klink, K. Nowicki, and C. Hoppe, “Comparison Study of H.264/AVC, H.265/HEVC and VP9-Coded Video Streams for the Service IPTV,” in 2018 26th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), 2018, pp. 1–6. doi: 10.23919/SOFTCOM.2018.8555840.

L. Guo, J. de Cock, and A. Aaron, “Compression Performance Comparison of x264, x265, libvpx and aomenc for On-Demand Adaptive Streaming Applications,” in 2018 Picture Coding Symposium (PCS), 2018, pp. 26–30. doi: 10.1109/PCS.2018.8456302.

Q. Huynh-Thu and M. Ghanbari, “The accuracy of PSNR in predicting video quality for different video scenes and frame rates,” Telecommun Syst, vol. 49, no. 1, pp. 35–48, 2012, doi: 10.1007/s11235-010-9351-x.

W. B. and F. K. V. O. and C. D. and de A. P. P. A. Romani Eduardo and da Silva, “Full-Reference SSIM Metric for Video Quality Assessment with Saliency-Based Features,” in New Trends in Image Analysis and Processing – ICIAP 2015 Workshops, E. and S. D. and C. M. and S. C. Murino Vittorio and Puppo, Ed., Cham: Springer International Publishing, 2015, pp. 547–554.

Z. Li, I. Katsavounidis, A. Moorthy, and M. Manohara, “Toward A Practical Perceptual Video Quality Metric .”

H. R. Sheikh and A. C. Bovik, “Image information and visual quality,” 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 3, pp. iii–709, 2004.

S. Li, F. Zhang, L. Ma, and K. N. Ngan, “Image Quality Assessment by Separately Evaluating Detail Losses and Additive Impairments,” IEEE Trans Multimedia, vol. 13, no. 5, pp. 935–949, 2011, doi: 10.1109/TMM.2011.2152382.

S. Lederer, C. Müller, and C. Timmerer, “Dynamic Adaptive Streaming over HTTP Dataset,” in Proceedings of the 3rd Multimedia Systems Conference, in MMSys ’12. New York, NY, USA: Association for Computing Machinery, 2012, pp. 89–94. doi: 10.1145/2155555.2155570.

S. Lederer, C. Mueller, C. Timmerer, C. Concolato, J. Le Feuvre, and K. Fliegel, “Distributed DASH Dataset,” in Proceedings of the 4th ACM Multimedia Systems Conference, in MMSys ’13. New York, NY, USA: Association for Computing Machinery, 2013, pp. 131–135. doi: 10.1145/2483977.2483994.

C. Kreuzberger, D. Posch, and H. Hellwagner, “A Scalable Video Coding Dataset and Toolchain for Dynamic Adaptive Streaming over HTTP,” in Proceedings of the 6th ACM Multimedia Systems Conference, in MMSys ’15. New York, NY, USA: Association for Computing Machinery, 2015, pp. 213–218. doi: 10.1145/2713168.2713193.

C. Chen, L. K. Choi, G. de Veciana, C. Caramanis, R. W. Heath, and A. C. Bovik, “A dynamic system model of time-varying subjective quality of video streams over HTTP,” in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, 2013, pp. 3602–3606. doi: 10.1109/ICASSP.2013.6638329.

C. G. Bampis, Z. Li, A. K. Moorthy, I. Katsavounidis, A. Aaron, and A. C. Bovik, “Study of Temporal Effects on Subjective Video Quality of Experience,” IEEE Transactions on Image Processing, vol. 26, no. 11, pp. 5217–5231, 2017, doi: 10.1109/TIP.2017.2729891.

N. Eswara et al., “A Continuous QoE Evaluation Framework for Video Streaming Over HTTP,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 28, no. 11, pp. 3236–3250, 2018, doi: 10.1109/TCSVT.2017.2742601.

D. Ghadiyaram, J. Pan, and A. C. Bovik, “A Subjective and Objective Study of Stalling Events in Mobile Streaming Videos,” IEEE Trans. Cir. and Sys. for Video Technol., vol. 29, no. 1, pp. 183–197, Jan. 2019, doi: 10.1109/TCSVT.2017.2768542.

C. G. Bampis, Z. Li, I. Katsavounidis, T.-Y. Huang, C. Ekanadham, and A. C. Bovik, “Towards Perceptually Optimized End-to-end Adaptive Video Streaming.,” arXiv: Image and Video Processing, 2018, [Online]. Available: https://api.semanticscholar.org/CorpusID:69349684

J. Vlaovic, D. Žagar, S. Rimac-Drlje, and M. Vranjes, “Evaluation of objective video quality assessment methods on video sequences with different spatial and temporal activity encoded at different spatial resolutions,” International journal of electrical and computer engineering systems, vol. 12, pp. 1–9, Aug. 2021, doi: 10.32985/ijeces.12.1.1.

B. Taraghi, M. Nguyen, H. Amirpour, and C. Timmerer, “Intense: In-Depth Studies on Stall Events and Quality Switches and Their Impact on the Quality of Experience in HTTP Adaptive Streaming,” IEEE Access, vol. 9, pp. 118087–118098, 2021, doi: 10.1109/ACCESS.2021.3107619.

H. T. T. Tran, N. P. Ngoc, T. Hoss{}feld, M. Seufert, and T. C. Thang, “Cumulative Quality Modeling for HTTP Adaptive Streaming,” ACM Trans. Multimedia Comput. Commun. Appl., vol. 17, no. 1, Apr. 2021, doi: 10.1145/3423421.

R. Rodrigues, P. Pocta, H. Melvin, M. V Bernardo, M. Pereira, and A. M. G. Pinheiro, “Audiovisual quality of live music streaming over mobile networks using MPEG-DASH,” Multimed Tools Appl, vol. 79, no. 33, pp. 24595–24619, 2020, doi: 10.1007/s11042-020-09047-6.

G. Esakki, A. S. Panayides, V. Jalta, and M. S. Pattichis, “Adaptive Video Encoding for Different Video Codecs,” IEEE Access, vol. 9, pp. 68720–68736, 2021, doi: 10.1109/ACCESS.2021.3077313.

J. Vlaovic, S. Rimac-Drlje, and D. Žagar, “Influence of Segmentation Parameters on Video Quality in Dynamic Adaptive Streaming,” Aug. 2020, pp. 37–40. doi: 10.1109/ELMAR49956.2020.9219029.

A. V Katsenou, F. Zhang, M. Afonso, and D. R. Bull, “A Subjective Comparison of AV1 and HEVC for Adaptive Video Streaming,” in 2019 IEEE International Conference on Image Processing (ICIP), 2019, pp. 4145–4149. doi: 10.1109/ICIP.2019.8803523.

Z. Duanmu, A. Rehman, and Z. Wang, “A Quality-of-Experience Database for Adaptive Video Streaming,” IEEE Transactions on Broadcasting, vol. 64, no. 2, pp. 474–487, 2018, doi: 10.1109/TBC.2018.2822870.

L. Bedogni, M. Di Felice, and L. Bononi, “Dynamic segment size selection in HTTP based adaptive video streaming,” in 2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2017, pp. 665–670. doi: 10.1109/INFCOMW.2017.8116456.

J. van der Hooft et al., “HTTP/2-Based Adaptive Streaming of HEVC Video Over 4G/LTE Networks,” IEEE Communications Letters, vol. 20, no. 11, pp. 2177–2180, 2016, doi: 10.1109/LCOMM.2016.2601087.

Taraghi, B.; Nguyen, M.; Amirpour, H.; Timmerer, C. Intense: In-Depth Studies on Stall Events and Quality Switches and Their Impact on the Quality of Experience in HTTP Adaptive Streaming. IEEE Access 2021, 9, 118087–118098, doi:10.1109/ACCESS.2021.3107619.

Taraghi, B.; Haack, S.Z.; Timmerer, C. Towards Better Quality of Experience in HTTP Adaptive Streaming. In Proceedings of the 2022 16th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS); 2022; pp. 608–615.

Esakki, G.; Panayides, A.S.; Jalta, V.; Pattichis, M.S. Adaptive Video Encoding for Different Video Codecs. IEEE Access 2021, 9, 68720–68736, doi:10.1109/ACCESS.2021.3077313.

Tran, H.T.T.; Ngoc, N.P.; Hossfeld, T.; Seufert, M.; Thang, T.C. Cumulative Quality Modeling for HTTP Adaptive Streaming. ACM Trans. Multimedia Comput. Commun. Appl. 2021, 17, doi:10.1145/3423421.

Vlaovic, J.; Rimac-Drlje, S.; Žagar, D.; Filipović, L. Content Dependent Spatial Resolution Selection for MPEG DASH Segmentation. J Ind Inf Integr 2021, 24, 100240, doi:10.1016/j.jii.2021.100240.

Esakki, G.; Panayides, A.; Teeparthi, S.; Pattichis, M. A Comparative Performance Evaluation of VP9, X265, SVT-AV1, VVC Codecs Leveraging the VMAF Perceptual Quality Metric.; September 2020.

Mercat, A.; Makinen, A.; Sainio, J.; Lemmetti, A.; Viitanen, M.; Vanne, J. Comparative Rate-Distortion-Complexity Analysis of VVC and HEVC Video Codecs. IEEE Access 2021, PP, 1, doi:10.1109/ACCESS.2021.3077116.

Nguyen, T.; Wieckowski, A.; Bross, B.; Marpe, D. Objective Evaluation of the Practical Video Encoders VVenC, X265, and Aomenc AV1.; September 2021; pp. 1–5.

Additional Files

Published

2024-07-18

Issue

Section

Review