Computer Controlled System for the Magnetron Sputtering Deposition of the Metallic Multilayers

Authors

  • Jacek Stępień AGH University of Science and Tedchnology
  • Konstanty Marszałek AGH University of Science and Tedchnology
  • Ryszard Mania AGH University of Science and Tedchnology

Abstract

Deposition of the metallic multilayers is a part
of the scientific program on the chemical reaction leading to
intermetallic compound formation. This reaction is known as self
propagation high temperature synthesis (SHS). The key problem
in this investigation is to produce the metallic multilayer system
with good repeatability of thin films thicknesses. Thin should
be thin, parallel and with low volume of intermixing region
between components. Computer control system for the pulsed
(mid frequency MF) magnetron sputtering equipment dedicated
for metallic multilayers deposition is presented in this paper. The
rotation velocity of the sample holder and the gas inlet through
membrane valves are the main parameters controlled by the
system. Parameters of the magnetron gun power supply, sample
temperature and technological gas pressure are registered. The
process cards which define all process parameters are collected
for each dedicated process type. All cards are collected in a
process cards library which permits for full automatization of
all operations. Software was written in a graphical LabVIEW
environment.

References

Zeldovich Ya.B , Frank-Kamenetski D.A., (1938), The theory of thermal

propagation of flames, Zh. Fiz. Khim. 12, 100–105 (in Russian); English

translation in Collected Works of Ya.B. Zeldovich, vol. 1, Princeton,

Univ. Press, 1992

Merzhanov A.G., Dubovitzkii F.I., (1966) Modern state of thermal

explosion theory. Usp. Khim, v.35, N 4, 656-683.

Merzhanov A.G., (1969) The theory of stable homogeneous combustion

of condensed substances, Combust. and Flame, v.13, 143-156.

Mania R., Wsołek M., Koziński S., (1994), Intermetallic compound prepared

by SHS method, Materiały Konferencji Nowoczesne Technologie

w Inżynierii Powierzchni, Spała, 443-446, (in Polish).

Mania R., (1998), Manufacturing of Mo-Al. Intermetallics by SHS,

Inżynieria Materiałowa, 19, 921.

Mania R., Dąbrowski M., Godlewska E., Koziński S., Rutkowska A.,

Trybalska B., Wojciechowski K., (2003), Some application of TiAl Micropowders

Produced by Self-Propagation High-Temperature Synthesis,

Intern. Journal of SHS, 12, 159.

Mania R., Stobierski L., Godlewska E., Koziński S., Mars K., (2004),

Composite from Mo-Al. Intermetallics Compouds and Aluminium Nitride,

Journal of SHS, 13, 49.

Blobaum K.J., Van Heerden D., Gavens A.J., Weihs T.P., (2003), Al/Ni

formation reactions: characterization of the metastableAl9Ni2 phase and

analysis of its formation, Acta Materialia, 51, 3871.

Trenkle J. C., Koerner L. J., Tate M. W., Gruner S. M., Weihs T. P. and

Hufnagel T. C., (2008), Phase transformations during rapid heating of

Al/Ni multilayer foils, Appl. Physics Lett., 93, 081903.

Gavens J., Van Heerden D.,Mann A. B., Reiss M. E. and Weihsa T. P.,

(2000), Effect of intermixing on self-propagating exothermic reactionsin

Al/Ni nanolaminate foils, J. Appl. Phys., 87 1255.

Ramos A.S., Vieira M.T., Morgiel J., Grzonka J., Simöes S., Vieira

M.F., (2009), Production of intermetallic compounds from Ti/Al and

Ni/Al multilayer thin films–A comparative study, Journal of Alloys and

Compounds, 484335.

Marszałek K., Mania R., (2011), Sputtering system for thin (TiAl)N

film deposition on cemented carbide, Elektronika, R. 52, nr 8, 70-72.

(in Polish)

Marszałek K., Sobków Z. , Cioruń J., (2009), LabVIEW controller for

sputtering process, Elektronika, R. 50 nr 1, 102–104, (in Polish).

Marszałek K., Sobków Z., Pisarkiewicz T., (2009), LCD displays test

system working in LabVIEW envionment , Elektronika, vol. 50, nr 9,

–86. (in Polish)

Standard IEEE 802.15.4–2006, IEEE Computer Society, (2006),

http://standards.ieee.org/getieee802/download/802.15.4-2006.pdf

IEEE 802.15.4 Standard, Retrieved 2012-10-18, (2012),

http://www.ieee802.org/15/pub/TG4.html

ZigBee Standard Specification–ZigBee Alliance, (2012),

http://www.zigbee.org/Specifications/ZigBee/download.aspx

Stępień J., Marszałek K., (2008), Wireless data networks for sensor,

Elektronika, 49, 6, 275–278, (in Polish).

Faludi R., Building Wireless Sensor Networks, O’Reilly, (2010).

Eady F., (2007), Hands-On ZigBee: Implementing 802.15.4 with Microcontrollers,

ZigBee Aliance.

Xiang L., (2013), Design of household control system based on ZigBee,

GSM and TCP/IP protocol, Control and Automation (ICCA), 1372–

Gomez C., Paradells J., (2010), Wireless home automation networks:

A survey of architectures and technologies, Communications Magazine

IEEE, 48, 92–101.

Stępień J., Kołodziej J., Ostrowski J., Golański R., (2012), Simple intelligent

building system with ZigBee communication units, Elektronika,

R. 53 nr 9, 157–162, (in Polish).

Przepiórkowski J., Silniki elektryczne w praktyce elektronika, Legionowo,

BTC, (2012).

Crnosija P., Kuzmanovic B., Ajdukovic S., (2000), Microcomputer

implementation of optimal algorithms for closed-loop control of hybrid

stepper motor drives, Industrial Electronics, IEEE Transactions, 4, 6,

–1325.

Gong S., Heb., (2009), LabVIEW-base automatic rising and falling speed

control of stepper motor, Electrical Machines and Systems ICEMS, 1–4.

Benhua Z., Chenghua L., Shiming S., Gan Lu, (2011), Design on a

unipolar and unidirectional stepper motor circuit, Proc. of the Int. Conf.

on Electronic and Mechanical Engineering and Information Technology,

, 1795–1797.

Downloads

Published

2014-12-07

Issue

Section

Technologies and Materials